HyMARC: Addressing Key Challenges to Hydrogen Storage in Advanced Materials Through a Multi-Lab Collaboration

Enabling twice the energy density for onboard H₂ storage

Mark D. Allendorf, Sandia National Laboratories Tom Gennett, National Renewable Energy Laboratory

Lawrence Livermore National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID: ST127

SAND2019-3177 PE

Overview

Timeline Phase 1: FY16 – FY18 Phase 2 FY19 – FY22	Barriers General: A. Cost, B. Weight and Volume, C. Efficiency, E. Refueling Time Reversible Solid-State Material: M. Hydrogen Capacity and Reversibility N. Understanding of Hydrogen Physi- and Chemisorption O. Test Protocols and Evaluation Facilities
Budget (Entire HyMARC Team)FY18 Phase 1 Funds:\$3,820KFY18 DOE Funding for Phase 2:\$5,501KFY19 DOE Funding (as of 3/31/19):\$2,350KFotal DOE Phase 2 Funds Received:\$7,851K	 Partners Sandia National Laboratories National Renewable Energy Laboratory Lawrence Livermore National Laboratory Lawrence Berkeley National Laboratory Pacific Northwest National Laboratory SLAC Accelerator Laboratory NIST Center for Neutron Research

Relevance: Although fuel cell vehicles are now commercially available, compressed H₂ storage falls short of several DOE targets

700 Bar Compressed Gas (2015 record) vs. revised ultimate Targets

Relevance: poorly understood phenomena at length scales from < 1 nm to μm govern storage material behavior

Distinct chemical/physical processes affect the bulk properties of storage materials

Multiple length scales must be taken into account

"Design rules" are needed to guide materials discovery

Objective: HyMARC aims to accelerate materials discovery

Assemble small, agile teams comprising synthetic, characterization, and modeling expertise

Foundational knowledge gaps

- Model material systems
- Thermodynamic data
- Kinetic data
- Microstructural features

New core capabilities

- Computational models
- Characterization tools
- Novel material platforms

Evaluate new material concepts

- Assess potential
- Perform high-accuracy measurements

"Gold standard" measurements

- Variable T PCT
- Thermal conductivity
- Ultrahigh-pressure reactor

- Structure-property relationships
- Rate-limiting steps
- What material features really matter?
- Probe and predict at all relevant length scales
- State-of-the-art tools for materials discovery
- Assist Seedling projects
- Define new research directions
- Provide guidance to DOE for funding investments
- Validate claims, concepts, and theories

Accomplishments: HyMARC Phase 1 by the numbers

- > 50 journal articles published
 - Including articles in Energy Env. Sci., Chem. Rev., Adv. Mater. Interfaces, Nat. Commun., Adv. Funct. Mater., Nano Lett., Chem. Mater.
 - 4 articles on journal covers
 - 2 HOT articles
- 4 patents (3 issued, 1 applied)
- Numerous invited talks (major international meetings, academic, gov't institutions)
- 6 Symposia and workshops organized at major conferences
- > 20 postdocs supported
- Global connectivity through extensive network of collaborations

Approach/HyMARC-2 Energy Materials Network: enhanced, highly coordinated capabilities to accelerate materials discovery

Approach Phase 2: Build on Phase 1 discoveries using multi-lab Focus Area teams with interdisciplinary expertise

		Tom Ge Co-	nnett (NREL) Director		Mark Allendo Co-Direc	orf (SNL) tor		
Task 1SorbentsGennettFocusAreas	Hy Al	Fask 2 /drides lendorf Focus Areas	Task 3CarriersAutreyFocusAreas		Task 4 Adv. Char. Parrilla (NREL validation) Prendergast (ALS, SLAC, MF) Bowden	Tas Seed Supp Allen Geni	c 5 ling oort dorf nett	Task 6 Data Hub Munch (NREL)
Task leads: Coordinate wo Milestone acco Reporting	rk ountii	ng			(PNNL NMR) Brown (NIST Neutron) Toney (SLAC, X-ray)			
Focus Areas (n Multi—lab Res Defined topic Dynamic, agile Duration: as lit Applied topics Foundational t	earch tle as Go/l	oncept): n clusters s 1 year No-Go s: mileston	es	BE	S User Facility PO	Cs		8

Sorbents Phase 1 Accomplishments: moved the bar toward materials that meet DOE targets

<u>Multiple molecular H_2 adsorption</u>: First sorbent material with validated existence of two H_2 molecules adsorbed per metal center

- ightarrow Doubles the volumetric capacity of strong-binding sites
- Chem. Commun., 2016, 8251

Highest validated volumetric capacity at room temperature to date:

Ni(m-dodbc): 11.0 g/L at 25 °C and 23.0 g/L for $5 \rightarrow 100$ bar pressure swing, $-75 \rightarrow 25$ °C temperature swing

- \rightarrow Demonstrates high capacity under realistic operating conditions
- Chem. Mater. 2018, 30, 8179

<u>**H**₂ binding energy in a MOF:</u> within optimal range $(15 - 25 \text{ kJ mole}^{-1})$

V₂Cl_{2.8}(btdd): Qst = 21 kJ mol⁻¹

- ightarrow Moving significantly closer to ambient-temperature storage
- see Slide 28 and ST130 for more information

New methodologies for validation

Improved accuracy of sorbent gas uptake measurements

- P.A. Parilla et al. Appl. Phys. A 122 (2016), 201
- K. E. Hurst et al. Appl. Phys. A **122:42** (2016) **DOI:** 10.1007/s00339-015-9537-x

Approach Sorbents Phase 2: building on Phase 1 discoveries

Key issues being addressed in Phase 2

- Need thermodynamics <u>under practical</u> <u>conditions</u>
- <u>Crystallite size/shape/packing</u> must be enhanced to improve capacity
- Can we <u>tailor isotherms</u> to increase capacity (5 100 bar swing)?
- Can <u>volumetric density of strong-</u> <u>binding sites</u> be increased?

Strategies based on Phase 1 results

Volumetric/gravimetric capacity

- Bind multiple H₂ to open metal sites
- Sol-gel, compaction, particle shape control methods
- Design structurally dynamic MOFs

Operating temperature

- Functionalize MOFs to add strongbinding sites
- MOFs with metals in low oxidation states (e.g. V(II))

Approach Sorbents Phase 2 Focus Areas: the path forward

	DOE Targets					
	Focus Area project	Grav. Capacity	Vol. Capacity	Min. Deliv. T	Min. Deliv. P	Team*
	Enthalpy/Entropy under practical conditions			X	Χ	<u>LBNL</u> , NREL, PNNL
	Electronic structure computations	Χ	Χ			LBNL
Adsorption	Synthesis: π-basic metals	Χ	X			LBNL
strong-binding	Synthesis: B/N Doping	Χ	X			<u>NREL</u> , PNNL
sites	Synthesis: highly polar open frameworks	Χ	X			<u>NREL</u> , LBNL
Sorbent	MOF monolith synthesis		Х			<u>LBNL</u> , SNL
packing	Packing protocol		X			NREL
Dynamic sorbents	Flexible MOFs		Х		X	<u>LBNL</u> , NREL
	Thermal/photo-responsive sorbent matrices		X		X	<u>NREL</u> , LBNL
	Multiple H ₂ binding			X	Х	<u>LBNL</u> , NREL, NIST
	Nanoscale defects in sorbents	X	X			<u>SNL</u> , NREL, LBNL

*Team lead is underlined

Hydrides Phase 1 Accomplishments: moved the bar toward materials that meet DOE targets

Min. operating T, P: Oxygenated surface species role in dehydrogenation → Paradigm shift in understanding of hydride surface chemistry

<u>Min. operating T, P</u>: comprehensive phase diagram for Mg(BH₄)₂ $\Delta H^{\circ} = 48 \text{ kJ mol}^{-1}$ (HSECoE target is 27 kJ mol⁻¹) → → bulk Mg(BH₄)₂ cannot meet DOE target

Min. flow rate: Mg(BH₄)₂@Carbon H₂ desorption T reduced by >100 °C
→ Borohydride activation energy reduction by nanoscaling

<u>Gravimetric capacity</u>: Mg(BH₄)₂@rGO >10 wt% → Record capacity for nanoencapsulated complex metal hydride

<u>Min. operating T</u>: Li₃N@(6nm-C) H₂ delivery T reduced by >180 °C Bulk (430 °C) → Nano (250 °C) → Reaction path modification through nanointerface engineering

Improved cycle life: Li₃N@(6nm-C) reversible >5 wt% H₂/250 °C/50 cycles → Demonstrates durability of nanoscaled materials
See also Slide 30 and ST132 for related information

Approach Hydrides Phase 2: building on Phase 1 discoveries

Science questions (selected)

- Are there <u>undiscovered phases</u> with favorable thermodynamics ≤ 27 kJ/mol H₂?
- Can <u>nano-scale strain</u> destabilize certain hydrides
- What are <u>rate-limiting steps</u>?

Strategies derived from Phase 1:

- Focus on relevant composition spaces
 - Borohydrides
 - Li-N-H
 - Ternaries (e.g. Li-B-Mg-H)
- Determine accurate phase diagrams
- Build on Phase 1 nanoscaling results
- Multiscale modeling to identify ratelimiting processes
- Target additives for specific bond activation
- Probe buried interfaces and surfaces using Phase 1 diagnostic tools
- Develop machine learning as new hydride material discovery capability

Approach Hydrides Phase 2 Focus Areas: the path forward

	DOE Targets								
	Focus Area project	Grav. Capacity	Vol. Capacity	Fill time	Time to full flow	Min. Deliv. T	Min. Deliv. P	Cycle life	Team (team lead is underlined)
Γ	Phase diagrams: ternaries	Χ	X			X	Χ		<u>LLNL</u> , SNL, PNNL
Thermo	Phase diagrams: eutectics	Χ	X			X	Χ		<u>SNL</u> , LLNL, PNNL, NREL
L	Large-scale atomistic models	Χ	X	Χ	X				<u>SNL</u> , LLNL
Surfaces	Interface Model Development			Χ	X			X	<u>LLNL</u> , PNNL, SNL
Interfaces	Non-ideal surfaces; phase nucleation			Χ	X			X	<u>SNL</u> , LBNL, NREL, LLNL
ſ	Modulation of B-H bond strength			Χ	X	X			<u>LBNL</u> , NREL, PNNL
Additives -	Additives for B-B rehydrogenation			Χ	X	X			<u>SNL</u> , LLNL, LBNL, PNNL
	Modeling B-B/B-H catalytic activation			Χ	X	X			<u>LLNL</u> , SNL, LBNL, PNNL
ſ	Nano-MH under mechanical stress			Χ	X				LLNL, NREL, LBNL, PNNL
Nano _ strategies	Non-innocent hosts see slide 31 & ST182			Χ	X				<u>SNL</u> , LLNL, LBNL
	MgB ₂ nanosheets			X	X	X	Χ		<u>LBNL</u> , LLNL, SNL
	Microstructural impacts			Χ	Χ			X	<u>LLNL</u> , LBNL, SNL
	Machine learning	Χ	X						<u>SNL</u> , LLNL

Relevance: Hydrogen carriers: a new effort initiated in Phase 2

- Bulk storage and transport are of central importance to the H2@Scale concept
- Highly varied storage needs:
 - Daily to seasonal in duration
 - Transport distances > 100s of km

<u>Goal</u>: new concepts and materials that provide advantages over conventional compressed and liquefied hydrogen for bulk storage and transport

H2@Scale concept

To learn more, see the HyMARC Hydrogen Carriers Webinar: https://www.energy.gov/eere/fuelcells/downloads/hydrogen-carriers-bulk-storage-and-transport-hydrogen-webinar

Approach Hydrogen Carriers: Leverage capability and expertise in HyMARC consortium to accelerate progress

- <u>Metrics & targets</u>: Define the important properties of storage materials beyond onboard vehicular
- <u>Techno-economic analysis</u>: Determine advantages and limitations of materials and approaches to hydrogen carriers for transport and long-term storage
- <u>Novel material concepts</u>: identify, characterize, and validate
 - Approaches to release or 'adsorb' hydrogen onto carriers
 - \circ No discrete step of making H₂(gas)
 - Approaches to prevent phase changes

• <u>Catalysts</u>: optimize the balance of properties:

- Stability (Turnover number)
- Rates (Turnover frequency)
- $\circ \text{ Cost }$
- \circ Selectivity
- $_{\odot}$ heterolytic vs. homolytic $\rm H_{2}$ activation

Examples of carrier strategies under consideration

Formate/bicarbonate cycle

	Focus Area project	Team*
	Hydrogen carrier production without direct H ₂ generation	PNNL
ſ	Dehydrogenative coupling in LOCs	PNNL
	Aqueous organic carriers	PNNL
Liquid organic	Liquid hydrogen carrier capacity determination	NREL
carriers	Characterization methods and development	<u>PNNL</u> , NREL
	Eutectic systems	<u>SNL</u> , NREL, PNNL
Chemical carriers	Formate/bicarbonate cycle; formic acid (See slide 32)	PNNL
Adsorbents as	Analysis of sorbents as hydrogen carriers	LBNL
carriers	Porous liquids	<u>NREL</u> , LBNL
Novel	Bioinspired materials	NREL
material	Plasmon interactions for "On-Demand" H ₂ release	<u>NREL</u> , LBNL
concepts	Heterolytic cleavage and H ₂ activation	<u>PNNL</u> , NREL
	Catalyst stability	LLNL

Phase 1 Accomplishment: comprehensive suite of characterization tools (in-situ, operando, all relevant length scales)

Length (m)

Atomic/molecular

AP-XPS ALS/BL 11.0.2

Lab-based AP-XPS

Molecular/micro (0.5 - 2 nm)Microporosimetry/BET

10 nm

Mesoscale (2 - 100 nm)

ALS

10-4

Grains (≤ 10 µm)

Macroscale/Bulk

Ultrahigh Pressure Reactor (1000 bar)

10⁻²

18

Phase 1 Accomplishment: extended characterization capabilities

DRIFTS

Thermal Conductivity

Variable Temperature PCT

- Diffuse reflectance system coupled to cryostat and gas adsorption analyzer
- Can collect data at 15-373 K and 0-100 bar (controlled dosing up to 1.2 bar)

- H₂, He, CH₄, CO₂ from vacuum to 100 bar
- Temperature Range: 40 K to 375 K
- Sample types include solids & compressed pucks & powder

- Modified PCT Pro system with capabilities of hydrogen pressures up to 200 bar, and a controlled temperature range from 40 – 350 K. (other gases possible including CH₄)
- New methodologies for increased measurement accuracy P.A. Parilla et al. *Appl. Phys. A* **122** (2016), 201

Approach Characterization Phase 2 Focus Areas: develop and enhance our Phase 1 advanced characterization capabilities

	Focus Area Topic	Team
	Righ-Temperature Validated PCT System	
_	PCT Calorimetry See slide 29 and ST131	NREL, PNNL
NMR -	Advanced NMR: NMR-FTIR-PCT instrument	LBNL (Long)
	High-Temperature/Low-pressure NMR capability	PNNL (Bowden)
ſ	Advanced in-situ, ex-situ Diffraction	SLAC, NIST
	Small-Angle X-ray Scattering	SLAC, NREL
Advanced in-	XAS/EXAFS	LBNL-ALS, SLAC
situ/ex-situ	Soft X-ray microscopies	LBNL-ALS
	Ambient-Pressure XPS	SNL, LBNL-ALS
	ATR DRIFTS for liquid carriers	LBNL
Neutron techniques	High-P/variable-T for Neutron Scattering Measurements	NIST
	Quasi-Elastic Neutron Scattering (QENS)	NIST
	VISION (highest resolution broadband INS	ORNL

Phase 1 Accomplishment: Multiscale modeling from understanding to design See ST129 for more information

Collaboration & Coordination: HyMARC currently collaborates with Phase 2 Seedling

Seedlings: the HyMARC team assists individual projects with:

- A designate HyMARC point-of-contact
- Technical expertise concerning specific scientific problems
- Access to HyMARC capabilities

Selected international collaborations

Hydrides

Sorbents

- **Development of Magnesium Boride Etherates as Hydrogen Storage Materials** (U. Hawaii)
 - Instability in MgB₂ B sheets explained (LLNL modeling investigation)
 - High-P hydrogenation, XRD, and FTIR performed for 43 MgB₂(etherate) samples
- Electrolyte Assisted Hydrogen Storage Reactions (Liox Power)
 - 1) High-P experiments and sample characterization; 2) Go/No-go tests
- ALD Synthesis of Novel Nanostructured Metal Borohydrides (NREL)
 - Nano-Mg(BH_4)₂ nanoparticle samples sent to NREL for ALD coating
- Optimized Hydrogen Adsorbents via Machine Learning & Crystal Engineering (U. MI)
 - Discussions on crystal engineering of OMS in MOFs

KAIST Korea (Prof. Eun Seon Cho): strain-induced effects Aarhus Univ. Denmark (Prof. Torbin Jensen); borohydrides Keith Wipke; Tel: 1-303-275-4451; email: Keith.Wipke@nrel.gov Co-Principal Investigator: Dr. Steven Christensen, National Renewable Energy Laboratory Univ. Cambridge (Prof. David Fairen-Jamez). MOF consolidation methods: steven.christensen@nrel.gov Co-Principal Investigator: Dr. Karl J. Gross, H2 Technology Consulting, LLC Contact Information: Tel: 1-510-468-7515; email: kgross@h2techconsulting.com

Carriers AIST (Prof. Qiang), *in-situ* solution NMR

Advanced

H2 TECHNOLOGY Fuel Cell Technologies DE-FOA-0001647: Energy Materials Network-

Office Annual FOA: Materials Research and Development Topic 3: HyMARC - Hydrogen Storage Materials Discovery Technical Subcategory: Lead Organization: National Renewable Energy Laboratory

15013 Denver West Parkway, Golden, Colorado 80401

- Milestone 1: 12/31/18: Focus Area 6.1: Data Hub Determine HyMARC Data Needs: Through meetings between the HyMARC Data Team and technical team members, we will identify data formats, sources and types used across HyMARC. We will develop best practices for data upload and sharing, and usage of defined metadata terms and forms. (100% complete)
- Milestone 2: 3/31/19: Focus 3.D.2: <u>Porous liquids as hydrogen carriers</u>: *Porous Liquids:* Demonstrate viability of click chemistry or nitrene approach for COF shell functionalization. (100% complete)
- Milestone 3: 6/30/19: Focus 2.C: <u>Activation of B-B and B-H bonds</u>: *Demonstrate* computational approach to enable screening of additives to activate B-B bonds in MgB₂. (in progress, on track)
- Milestone 4: 9/30/19: Demonstrate >6% reversible capacity for at least one Li-N-H or Mg-N-H phase, based on predicted composition from phase diagram, with reasonable kinetics at a temperature of ≤ 300 °C. PCT isotherm measurements will be carried out at temperatures ≤ 300 °C measuring total hydrogen uptake and release for each cycle. Isotherm plots and total hydrogen uptake and release data will be provided for each cycle. Data indicating at least 6wt% total hydrogen gravimetric capacity with reasonable kinetics at a temperature of ≤ 300 °C will constitute meeting the milestone criteria. (In progress)

Proposed future work (Any proposed future work is subject to change based on funding levels.)

Project level

- Assess effectiveness of management structure and communications
- Evaluate progress of "applied" Focus Areas
- Renew Approved Program at LBNL/ALS for dedicated access to beam lines
- Establish access to VISION high-resolution instrument at ORNL/SNS

Data hub

• <u>Begin uploading data to Data Hub</u>, including DOE Hydrogen Storage Database

Sorbents

- Establish <u>new models for determining isosteric heats and entropy</u> from PCT data
- <u>New methods for powder compaction</u>, including gel formation and physical methods

Hydrides

- <u>Activation of B-B and B-H bonds</u>: *Demonstrate computational approach to enable screening of additives to activate B-B bonds in MgB*₂.
- <u>Reversible capacity</u>: Demonstrate >6% reversible capacity for at least one Li-N-H or Mg-N-H phase, based on predicted composition from phase diagram, with reasonable kinetics at a temperature of ≤ 300 °C

Carriers

• <u>Carrier material approaches</u>: Determine state-of-the-art

Advanced characterization

 <u>Validate the new operational fluidized bed heated PCT</u> System for temperatures up to 375 °C and pressures of 150 bar

Summary

HyMARC Phase 2 National Laboratory team continues these activities:

- Foundational research to accelerate materials discovery
- Development of advanced characterization tools
- Computational modeling across all relevant length scales
- Innovative material synthesis
- Innovative materials development
- Collaboration and assistance to Seedling projects

A new Hydrogen Carriers initiative was started (Tom Autrey, PNNL, lead)

A new Data Hub task was initiated (Kristin Munch, NREL, lead)

Organization/management structure revised:

- "Focus Area" projects developed to enable more agile, intensive research on specific areas
- Primary topic areas (e.g., Sorbents, Hydrides, etc.) have lead PI to ensure activities and progress remain on track

We are grateful for the financial support of EERE/FCTO and for technical and programmatic guidance from Dr. Ned Stetson, Jesse Adams, and Zeric Hulvey

Enabling twice the energy density for onboard H₂ storage

Technical Back-Up Slides

- In situ powder neutron diffraction: Extremely short Cu–D₂ distance observed in Cu¹-MFU-4/ by neutron powder diffraction. Corroborates strong binding enthalpy and large red-shift of u(H–H) observed from DRIFTS.
- High-P adsorption: Open Cu⁺ sites saturate at relatively low pressures. Volumetric usable capacity for Cu^I-MFU-4/ surpasses Ni₂(m-dobdc) at 75 °C.
- DRIFTS in V₂Cl_{2.8}(btdd): VTIR confirms high enthalpy of adsorption. Enthalpy–entropy relation distinct from M₂(dobdc) family.

Thermodynamics and Isosteric Heats

- Milestone to determine Q_{st} at various T and to validate Cryo-PCT system completed in 2018
- Effort raised several issues about Q_{st} determination & motivated further investigation
- Modeling indicates that several types of bias can be introduced into this determination
- Fundamental assumptions are not valid in the supercritical state

Thermodynamically feasible - but – how is it possible to reduce a closoborane, $MgB_{10}H_{10}$ to $Mg(BH_4)_2$ < 200 °C and < 100 bar H_2 ?

- Thermodynamics favor regen of Mg(BH₄)₂ from MgB₁₀H₁₀ (ΔH ca. 38 kJ/mol, ΔS ca. 95 J/K/mol, T (1 bar H₂) = 135 °C
- Additives, e.g., THF lower the mp of Mg(BH₄)₂.
- Sub-stoichiometric amounts, e.g., 0.25 THF/Mg results in a mixture of phases.
- Mixture melts between 75 100 °C to yield common amorphous phase.
- The melt amorphous phase is stable until ~ 180 °C, when H₂ is released to form B₁₀H₁₀ as the major product.
- Can do fast cycling, but heating too long or cooling to room temperature stops ability to cycle.

Isolated molecularly dispersed Mg(BH₄)₂ species with record low hydrogen release temperature

- \Rightarrow TEM and XAS data, coupled with DFT calculations, reveal that Mg(BH₄)₂@UiO-67-bipy is composed of molecular Mg(BH₄)₂ species coordinated to bipyridine groups
- \Rightarrow Hydrogen release starts as low as 120 deg. C, >100 deg. C lower than bulk.

Carrier concepts: Chemical compression from formic acid

Max storage density ca. (FA) 53 g H_2 /liter; generate >700 bar pressure

Top challenges

- Separation of H₂ from CO₂ at high pressure
- Preparation of H₂CO₂ by electrochemical processes

Collaboration with Karsten Mueller Hydrogenious

Schematics of various concepts for hydrogen fueling stations

b) Schematic of a H₂ fueling station based on a low pressure hydrogen source

c) Schematic of a H₂ fueling station using hydrogen carrier releasing H₂ at elevated pressures

*Releasing Hydrogen at High Pressures from Liquid Carriers: Aspects for the H*₂ *Delivery to Fueling Stations Energy & Fuels* DOI:10.1021/acs.energyfuels.8b01724