HyMARC: LBNL Technical Activities

2019 DoE Hydrogen and Fuel Cells Program Review May 1, 2019

David Prendergast¹ and Jeffrey R. Long²

¹The Molecular Foundry and ²Materials Sciences Division Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Project ID #: ST130

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project Start: 10/1/2015 Phase 2 Start: 10/1/2018 End: Project continuation determined by DoE. Currently scheduled through 9/30/22

Budget

Federal Share (Prendergast) FY18 (Phase 1): \$575k FY18 (Phase 2): \$735k FY19 (through 3/31/19): \$200k

Federal Share (Long) FY18 (Phase 1): \$300k FY18 (Phase 2): \$983k FY19 (through 3/31/19): \$400k

Barriers Addressed

General: (A) Cost, (B) Weight and Volume, (C) Efficiency, and (E) Refueling Time **Reversible Solid-State Material:** (M) Hydrogen Capacity and Reversibility (N) Understanding of Hydrogen Physi- and Chemisorption, and (O) Test Protocols and Evaluation Facilities

Partners/Collaborators

- LBNL Walter Drisdell
- LLNL Brandon Wood
- NIST Craig Brown, Terry Udovic
- NREL Tom Gennett, Phillip Parilla
- **PNNL –** Tom Autrey, Mark Bowden
- SNL Mark Allendorf, Vitalie Stavila
- $H_2ST^2 H_2$ Storage Tech Team

Approach: LBNL leads or is Part of Several Focus Area Teams

Focus Areas discussed in this presentation are in red

Task 1: Sorbents

- 1.A Enthalpy/entropy under practical conditions (<u>Lead</u>; NREL, PNNL)
- 1.B Strong-binding sites (theory and synthesis) (<u>Lead</u>)
- 1.C Sorbent packing: MOF monolith synthesis (<u>Lead</u>)
- 1.D Dynamic sorbent materials (Lead)
- 1.E Multiple H₂ binding (<u>Lead</u>)

Task 2: Metal hydrides

- 2.A Non-ideal surfaces and phase nucleation
- 2.C Modulation of B–B and B–H bond strength (<u>Lead</u>)
- 2.D.1 Nanoscale metal hydrides under mechanical stress
- 2.D.2 Non-innocent hosts
- 2.D.3 MgB₂ nanosheets (<u>Lead</u>)
- 2.E Microstructural impacts

Task 3: Hydrogen carriers

- 3.B Aqueous organic carriers
- 3.D.1 Sorbents as hydrogen carriers (<u>Lead</u>)
- 3.D.2 Porous liquids
- 3.F Plasmon interactions for "On-demand" H₂ release

Task 4: Advanced characterization

- 4.C.1 NMR-FTIR-PCT instrument (Lead)
- 4.D.3 XAS/EXAFS
- 4.D.4 Soft X-ray spectroscopies and microscopy (ALS) (<u>Lead</u>)
- 4.D.6 ATR DRIFTS (Lead)

Relevance – FY19 Project Objectives

Sorbents (Task 1)

- Research and development of metal-organic frameworks with high volumetric and gravimetric H₂ storage capacities (Barrier A – C, E).
- Development of metalation procedures for high volumetric and gravimetric H₂ storage capacities (Barrier B)
- In situ IR and NMR characterization (Barrier N,O)
- Perform accurate simulations of high-pressure H₂ adsorption in MOFs based upon information from CoRE database

Metal hydrides (Task 2)

- Develop more complete model for metal hydride-graphene interface based upon *in situ* X-ray spectroscopy and theoretical modeling
- Develop synthesis of pure Mg(BH₄)₂ NPs wrapped by rGO
- Develop synthesis to enable targeted extrinsic doping using graphene nanoribbon-based systems

Hydrogen carriers (Task 3)

- Set up new flow reactors with GC/MS to probe liquid carrier reactions
- Evaluate sorbents as potential carriers

Advanced characterization (Task 4)

 Develop new methodologies to enable *in-situ* X-ray spectroscopic probing of buried interfaces in metal hydrides under working temperatures

Accomplishment 4.D: Expanded/Enhanced Characterization Capabilities at LBNL. Our Focus is on *in Situ*/Operando Methods

In Situ/Operando Soft X-ray Spectroscopy

- H₂ adsorption, 1 bar, RT, transmission (bulk)
- H₂ release, RT–500 °C TFY (µm), TEY (nm)
- Hydrogenation, 1 bar, RT–250
 °C TFY (µm), TEY (nm)

Ex Situ X-ray Spectroscopy

- Multiple ALS BLs for relevant elements (e.g. Mg, B, Li, Na K-edge)
- DFT XANES simulations of "standards" can reveal presence of impurities/ additives

Ambient Pressure XPS (LBNL+SNL)

- Synchrotron AP-XPS, ALS BL 11.0.2
- Lab-based AP-XPS, SNL

In Situ Infrared Spectroscopy

 Diffuse reflectance system coupled to cryostat (15–373 K) and gas adsorption analyzer (0–100 bar)

Approach – Hydride Nanoscaling (2.D): Form Nanocomposites with Ultrathin Carbon Nanomaterials as Hosts or Encapsulants

Functionalized nanoribbons (Felix Fischer)

Technical issues for Task 2 (hydrides):

- Bulk materials typically present thick oxidation layer
- Active region buried underneath this
- X-ray probes perhaps too surface sensitive
- Requires cleaning of surface non-operando

Synergies with Task 4 (Advanced Characterization, 4d3, 4d4):

- Nanocomposites exhibit high interface:bulk ratio
- Active region distributed throughout sample
- X-ray probes (and bulk techniques) suitable
- Samples resistant to contamination
- Encapsulation to minimize weight penalty

LBNL nano-hydride Phase 2 2D. approaches:

- Build on Phase 1 material platforms
- 2.A: Thermodynamics modulation to avoid thermodynamic sinks
- 2.D.1, 2.D.2: Nanoencapsulants as noninnocent hosts

Reduced graphene oxide (rGO) (Jeff Urban)

Accomplishment 2.D: rGO Enables Retention of Nanoscale Active Material

Mg(BH₄)₂ @rGO exhibits >10 wt% – a record stable capacity for a complex nanohydride

Sandia National

aboratories

Accomplishment 2.D: Nanoencapsulation Creates Synergy with Task 4 to Enable *in situ* Characterization of Complex Hydrides

γ-Mg(BH₄)₂@rGO :

- H₂ release temperature reduced (<400 °C vs. 500 °C bulk)
- New XANES-accessible T-range (250 °C hydrogenation; 500 °C dehydrogenation) enables operando probing of complex hydrides
- Reduced oxidized content observed at nanoparticle surface
 - Borohydride spectral intensity below 193 eV
 - 194 eV peak from oxidized B
- 1 bar sufficient to rehydrogenate

Accomplishment 2.D: Accelerated H₂ Release from Mg(BH₄)₂ Nanoencapsulated in MOF Hosts

Sandia National Guo, Liu (LBNL); Stavila (SNL) Laboratories **UiO-67-bpy:** $Zr_6O_4(OH)_4(bpydc)_6$ Mg K-edge **B** K-edge **UiO-67:** $Zr_6O_4(OH)_4(bpdc)_6$ TEY TFY TFY MBH MgB_2 Mg(OH)₂ Intensity (a.u.) MBH ntensity (a.u.) MBH MBH@UiO-67 MBH@UiO-6 MBH@UiO-MBH@UiO-67-bpy 67-bpy MBH(Bu MBH(Bu) 1310 1320 1330 1340 1290 1300 192 196 200 204 188 208 MBH@UiO-67-bpy Photon Energy (eV) Photon Energy (eV)

TGA suggests range 120–260 °C where MBH is losing mass

Sandia

National

aboratories

■ RGA indicates mostly H₂ at 120 °C → record low onset T for MgBH dehydrogenation

_awrence _ivermore National

XAS confirms MgBH is present within MOF pores

Pacific Northwest

Accomplishment 3.B: New Flow Reactors for Hydrogen Carrier Research

Prof. Gabor Somorjai, Dr. Ji Su

Newly refurbished capabilities in Somorjai lab will be employed to develop catalysts for dehydrogenation/hydrogenation of organic hydrogen carriers. Projects underway:

Methanol Decomposition

900 °C; 300psi; GC; Liquid- and/or gas-phase reactions

Methane Dehydrogenation

250 °C; GC; Liquid metal catalyst exploration

Phase-2 Approaches: New Concepts for Boron-based Storage Materials

Urban, Jeong, Zhang (LBNL) 110 100 Deriv. Weight (%/°C) Weight (%) NaB⊦ NaBH₄-NbBı 90 NaBH₄-CaCl 80 70 0 50 100 150 250 300 350 400 200 Temperature (°C) 002 BN from Urea and B₂O₃ (Low B₂O₃ content) ¹⁰⁰ 101 ntensity (a.u.) Exfoliated BN 002 004 BN from Sigma 002 100 101 004 20 25 30 35 45 50 55 15 20/degree

Focus Area 2.C: Borohydrides destabilization by divalent halides

<u>Preliminary data</u>: Thermogravimetric analysis shows that divalent halides enhance decomposition of borohydrides.

Focus Area 1.B.2: porous BN as novel sorbent

Recent theory: 8.65 wt% H₂ at 300 K (Zhang et al. *J. Mater. Chem. A*, **2015**, *3*, 9632)

Synthesis of BN sheet materials and further substitutional doping or defects engineering for hydrogen storage

Bottom up

method

Top down

exfoliation method

Approach 1.B (Strong Binding Sites): Validation Effort

Is it possible to create MOFs that adsorb H_2 with an enthalpy in the optimal range of -15 to -25 kJ/mol?

 Values are based upon assumptions about the correlation between adsorption enthalpy and entropy, but these assumptions are not necessarily valid

> Bhatia, Myers *Langmuir* **2006**, *22*, 1688 Garrone, Bonelli, Otero Arean *Chem. Phys. Lett.* **2008**, *456*, 68

Denysenko, Jelic, Reuter, Volkmer, Angew. Chem. Int. Ed. 2014, 53, 5832

In situ Powder Neutron Diffraction Results

- Cu-bound D₂ can be resolved despite disorder with Zn–Cl at these sites
- Dosing below 80 K leads to a metastable structure with d(Cu–D₂) ~ 1.9 Å
- Significant lattice contraction with strong D₂ binding

Sandia

National

aboratories

Kinetics data will allow us to measure the activation energy for D₂ binding

_awrence _ivermore National

Pacific Northwest

In Situ X-ray Absorption Spectra of Cu^I-MFU-4/

- Cu L-edge data probe how 3d manifold is affected by interaction with adsorbate
- Increase in edge intensities indicate increased 3*d* hole character on H₂ binding

Sandia

National

- CO produces a similar response to H₂ while NH₃ shifts the edges to higher energy
- Calculations to map spectral changes to adsorbate electronic character in progress

14

Pacific Northwest

with Greg Su, Walter Drisdell, and David Prendergast (LBNL)

awrence

Accomplishment 1.B: Synthesis of MOF with Validated Adsorption Energy in Optimal Range

Hypothesis: Open V²⁺ coordination sites will place us in this range

No such MOFs were known, but we've finally made one

 $V_2CI_{2.8}(btdd)$

- Langmuir SA = 3290 m²/g, BET SA = 1930 m²/g
- ΔH from DRIFTS = -21.0 kJ/mol

IR Spectra for $V_2CI_{2.8}$ (btdd) Dosed with H_2 and D_2

Subtraction of D₂ spectrum from H₂ spectrum unambiguously resolves peaks

Lawrence Livermore National

Largest bathochromic shift yet observed for M²⁺ in a porous material

Sandia

National

aboratories

 Energy decomposition analysis exhibits that V²⁺ has the most favorable energetics in M^{II}₂Cl₂(btdd) (M = Ti, V, Mn, Co, and Ni)

Challenges to Address Moving Forward

MOF	Metal ion	∆ H from DRIFTS (kJ/mol)	Q_{st} from isotherms (kJ/mol)	∆ H from theory (kJ/mol)	Total H ₂ uptake at 298 K, 100 bar (g/L of crystal)
Ni ₂ (<i>m</i> -dobdc)	Ni ²⁺	-13.7	-12.3	-18.6	11.9
Cu ^I -MFU-4/	Cu⁺	-33.6	-32.7	-44.8	11.0
Cu ^l -CFA-1*	Cu⁺	in progress	in progress	in progress	in progress
V ₂ Cl _{2.8} (btdd)	V ²⁺	-21.0	-21	-25.4	in progress

*See the reviewer-only slides section for details

 Gain a complete understanding of H₂ adsorption in these V^{II} and Cu^I systems: High-pressure adsorption isotherms and *in situ* spectroscopy Neutron diffraction studies

Computational studies to understand strong temperature dependence of ΔH

Increase the density of the available metal binding sites

Approach 1.E: Is it Possible to Create MOFs with Open Metal Sites That Adsorb More Than Two H₂ Molecules?

- This is a long-standing, "holy grail" challenge in MOF chemistry
- Highly complex synthetic challenge

Mn₂(dsbdc) adsorbs two H₂ at a Mn²⁺ site: Runčevski, Kapelewski, Torres-Gavosto, Tarver, Brown, Long *Chem. Commun.* **2016**, *52*, 8351

Next-Generation

4 or 5 H₂ per metal cation

Gas phase reaction*

- Established ALD materials
- No solvent
- Good pore accessibility
- No counter-ions remain

* Summary table is in the backup slides section

Future Directions (Sorbents)

- Synthesize smaller pore analogues of Cu^I-MFU-4/ and V₂Cl_{2.8}(btdd) to increase volumetric H₂ capacities
- Develop further sampling and data processing methods (e.g. H₂/D₂ subtraction) to measure accurate ΔH_{ads} and ΔS_{ads} in frameworks with open metal sites
- Continue metalation of frameworks with functionalized linkers to access lowcoordinate metal sites
- Pursue flexible MOFs that can maximize H₂ usable capacity through stepshaped adsorption isotherms
- Characterize molecular H₂ binding free energies across three families of sorbent materials
- Complete and upload the H₂ storage benchmark database

Any proposed future work is subject to change based on funding levels

Collaborations

- LBNL/UC Berkeley (adsorbents) Jeffrey Long: synthesis & characterization, in situ IR-NMR spectroscopy; Martin Head-Gordon: computation
- LBNL/UC Berkeley (hydrides) David Prendergast: theory, simulated spectroscopy; Jeffrey Urban: nanomaterials synthesis; Jinghua Guo: soft X-ray characterization; Felix Fischer: molecular synthesis; Gabor Somorjai: heterogeneous catalysis; Stephen Whitelam: theory, kinetics of porous materials
- LBNL/UC Berkeley (H₂ carriers) Jeffrey Long: synthesis & characterization; Hanna Breunig: techno-economic analysis
- LBNL (advanced characterization) David Prendergast: theory, simulated spectroscopy; Jeffrey Long: in situ IR-NMR spectroscopy
- LLNL Brandon Wood: multi-scale modeling and computational spectroscopy
- NREL Thomas Gennett, Phillip Parilla: characterization
- PNNL Thomas Autrey, Mark Bowden: carriers, NMR
- SNL Mark Allendorf, Vitalie Stavila: synthesis & characterization
- NIST Craig Brown: neutron diffraction and neutron spectroscopy
- Additional collaborations Walter Drisdell (LBNL); Stephen FitzGerald (Oberlin College); Jeffrey Grossman (MIT); Agiltron, Inc.

Summary (FY19 Internal LBNL Milestones)

Task	Milestone	Due	Status
1.B.1	Electronic structure computations: Generate a benchmark database tailored towards H_2 with the goal of providing inexpensive predictive analytics.	9/2019	50%
1.B.2	Synthesis of adsorbents with optimal binding energies: Determine the enthalpy of H_2 binding in V_2CI_2 (btdd) using both low-P isotherms and variable-temperature DRIFTS.	9/2019	100%
1.C.1	MOF monolith synthesis: Demonstrate monolith HKUST-1 takes up 50% greater volumetric H_2 uptake compared to the corresponding powder MOF.	9/2019	50%
1.D.1	Flexible MOFs: Synthesize 4 derivatives of Co(bdp) derivatives. Measure isotherms at 77 K to observe how step pressure changes with substitution pattern.	9/2019	20%
1.E	Multiple H₂s per metal: Demonstrate metalation of both Mg and Ca in two different frameworks and measure H ₂ heat of adsorption.	9/2019	20%
2.C	B–B bond activation: Synthesize halide-substituted MgB ₂ and/or organic compounds incorporated into the MgB ₂ matrix.	6/2019	5%
3.D.1	Analysis of adsorbents as carriers: TEA to establish metrics for H ₂ delivery.	9/2019	30%
4.C.1	NMR-FTIR-PCT instrument: Set up a benchtop NMR magnet with a high- pressure gas adsorption analyzer.	9/2019	20%
4.D	Advanced synchrotron and ATR DRIFTS characterization techniques:		

This work was supported by the U.S. Department of Energy (US DOE), Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Office (FCTO), under Contract No. DE-AC02-05CH11231.

Reviewers: Thank you for the constructive feedback.

Sandia

Technical Backup Slides

Sandia National

Accomplishment 1.B: Benchmarking Density Functionals

- Objective: To identify inexpensive density functionals which can predict hydrogen binding energies accurately
- Dataset consists of wide variety of binding motifs commonly encountered in hydrogen adsorption frameworks:
 - $\circ~$ Organic linkers, main group and transition metal open binding sites
- 40 density functionals including LDAs, GGAs, metaGGAs and hybrids, with and without empirical dispersion correction (-D3) assessed

	Density functional	Rank	Root Mean Square Error*
	ω B97M-V	1	1.55 kJ/mol
functionals	ω B97X-V	2	1.80 kJ/mol
	B97-D3(BJ)	4	1.91 kJ/mol
Commonly used	PBE	18	2.99 kJ/mol
functionals	B3LYP-D3	16	2.64 kJ/mol

- ωB97M-V is a range-separated, hybrid metaGGA with VV10 non-local correlation
 offers the best performance
- B97-D3(BJ), a GGA functional with empirical dispersion correction represents the best tradeoff between accuracy and cost

24

Accomplishment 1.C: HKUST-1 Monolith Synthesis is Reproducible

	Density (g/cm³)	Cu:BTC ratio ¹	Langmuir SA (m²/g)	Pore volume (cm ³ /g)	H ₂ uptake at 77 K, 1 bar (g/L)	→
Monolith	1.01 ²	1.43	1750	0.63	22.5	0.5 cm
Reported monolith ³	1.10 ² (1.04) ⁴		1470	0.52		
Powder	0.43 ⁵	1.37	2150	0.77	11.2	
.cif data	0.881	1.50	2240 ⁶	0.80 ⁶	n.a.	0.5 cm

¹Determined from TGA data. ²Archimedean immersion method. ³Tian, Zeng, Vulpe, Casco, Divitini, Midgley, Silvestre-Albero, Tan, Moghadam, Fairen-Jimenez *Nat. Mater.* **2018**, *17*, 174. ⁴Mercury porosimetry. ⁵Hand packing density: Peng, Krungleviciute, Eryazici, Hupp, Farha *J. Am. Chem. Soc.* **2013**, *135*, 11887. ⁶Calculated using *Materials Studio*.

- HKUST-1 monolith density is greater than HKUST-1 powder density
- At 77 K and 1 bar, volumetric H₂ uptake of the monolith is twice as high as observed for the packed powder
- High-pressure H₂ and CH₄ isotherms will be collected

Accomplishment 1.E: Summary of Zr-Based MOF Metalations

Metal Site	Metalating Reagent	Metalation yield (%)	Langmuir SA (m²/g)	H ₂ Uptake* (mmol/g)			
	UiO-67-PhOpydc system						
UiO-67-PhOpydc		n/a	2880	9.2			
Cu	Li[Cu(CH ₃) ₂]	86	70	0.78			
Cu	Cu(CH ₃ CO ₂)	72	2370	8.4			
Cu	Cu(N(SiMe ₃) ₂	22	2000	9.4			
Cu	[Cu(Mes)] _n	9	2640	9.4			
Mn(CO) _x	Mn(CO) ₅ Br	40	1500**	5.3			
Re(CO) _x	Re(CO) ₅ Cl	26	1510**	6.2			
Li	<i>n-</i> BuLi	33	n.d.	5.3			
UiO-68-cat system							
UiO-68-cat		n/a	3470	6.7			
Ni	$Ni(C_3H_5)_2$	17	1870	3.4			
Mg	Mg(Cp ^{Et}) ₂	108	3220	7.0			

*Excess uptake at 77 K and 1 bar. **Measured before photolysis.

Remaining Challenges and Barriers

- Complete insertion of metal cations into O,O-, N,O- or N,N-chelating groups within MOFs is a key synthetic challenge
- Can we demonstrate adsorption of 3 or more H₂ molecules per metal?
- Establishing a valid correlation between ΔH and ΔS for H₂ adsorption under target operating conditions: 5-100 bar and –40 to 60 °C
- Can we manipulate ΔS with synthetic chemistry?
- While accurate computational tools are available for calculating binding energies, the optimal trade-off point between accuracy and expense is still under investigation
- Achieve size control in synthesis and reversibility of encapsulated Mg(BH₄)₂ materials
- Incorporate theoretical insights on graphene-hydride interface into advanced synthesis of these materials
- Performing *in situ* soft X-ray spectroscopies achieving realistic hydrogen storage (i.e. UHV requirement)
- Understanding coordination/reactivity of Mg(BH₄)₂ with oxide and graphene interfaces
- The relations between the strength and number of open metal sites, overall pore morphology and the adsorbent performance in H₂ storage are not fully understood

Any proposed future work is subject to change based on funding levels

Responses to Previous Year Reviewers' Comments

FY18 Reviewer Comment	FY19 Response to Comment
ANL (ST-001, Ahluwalia) showed that even in the most optimistic case of 4 H_2 molecules per metal, the theoretical uptake (at 25 °C, 100 bar) is still a factor of two lower than the value needed to reach the system target.	Our current focus is the development of (gas-phase) metalation procedures for the multiple H_2 adsorption per metal site. Once experimental protocols are established, metalation of open metal site MOFs with f-block elements (higher coordination number) and optimization of framework dead space will be considered. In addition, we initiated a new task for the monolith formation, whose volumetric uptake can be twice as large as powder samples.
The theory effort has not supported the experimental work closely. Much of the work on predicting candidates and variations could use a more HT DFT. Also, it remains to be seen whether this functional has such a good performance across the board. More effort needs to be devoted to multiple H_2 s and understanding bonding, polarization, and dynamics.	The Density Functional benchmarking effort assesses the performance of dispersion-corrected density functionals (e.g. PBE-D3) across a range of chemically diverse binding motifs, containing one or multiple H_2 s bound to a single metal site. Quantifying anharmonic effects and polarization of gas binding are the subject of current research, but slightly outside the scope of this particular database endeavor. We will be reporting progress on both these topics shortly.
A stronger integration of theory in the design of experiments is recommended. This connection needs to be more direct.	HyMARC is structured to leverage capabilities and investments at individual labs. Regarding theory/modeling, these capabilities are largely centered at LLNL (although computational spectroscopy is a strong capability of the Molecular Foundry). Five 2017-18 hydride-related HyMARC publications involve close theory- experimental collaborations. In addition, two review articles were published coauthored by theorist with experimentalists.

Laboratories

