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Overview 
Timeline* 

Phase 1: 10/1/2015 to 9/30/2018 
Phase 2: 10/1/2018 to 9/30/2022 
Project continuation determined 
annually by DOE. 
(*previously a component of NREL’s 
materials development program and 
supported annually since 2006) 

Budget 
NREL: 
FY 18 HyMARC Phase 1 - $450k 
FY 18 HyMARC Phase 2 - $1.2M 
FY 19 HyMARC Phase 2 - $450k** 

Note: includes $ for DataHub; 
postdocs at NIST and SLAC 

Barriers addressed 
General: 

A. Cost, B. Weight and Volume, C. Efficiency, 
E. Refueling Time 

Reversible Solid-State Material: 
M. Hydrogen Capacity and Reversibility 
N. Understanding of Hydrogen Physi- and Chemisorption 
O. Test Protocols and Evaluation Facilities 

Partners/Collaborators 
NIST – Craig Brown, Terrence Udovic 
SLAC – Michael Toney 
HyMARC – SNL, LLNL, LBNL, PNNL team members 
H2ST2, USA – Hydrogen Storage Tech Team 
Colorado School of Mines - Colin Wolden, Brian 
Trewyn, Alan Sellinger 
Univ. Hawaii – Craig Jensen, Godwin Severa 
Université de Genève – Hans-Rudolf Hagemann, 
Angelina Gigante 

**funds received as of 3/31/19 



  
    

      
 

  
   

      
       

        
     

    
 

  
    

 
  

Relevance: NREL Role 
• Perform validation measurements for DOE 
• Collaborate with other groups to characterize H2 adsorption 

o BET, TPD, PCT, DRIFTS, DSC/TGA, Raman, TC measurements 
• Promote hydrogen adsorption measurement accuracy 

o Measurement/Reporting Protocols 
o Develop universal protocols for thermodynamic property calculations 

• Design and develop next generation hydrogen storage materials 
• Advance hydrogen carriers research effort 

o Seek/develop/advance new concepts and materials that have potential to
provide advantages over conventional compressed and liquefied hydrogen for
bulk storage and transport of hydrogen (H2@Scale) 

• Utilize new advanced characterization techniques 
o Cryo-PCT system, Cryo-TC system, PCT-calorimetry, PCT-liquid carriers 
o in-situ capabilities through SLAC & NIST collaborations 

• Support seedling projects 
• DataHub design and management 
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NREL Approach: Focus Areas: Black–active (AMR slides), Purple-active, Blue-future 

• Task 1 Sorbents 
o 1.A Focus Area: Enthalpy / Entropy and Isosteric Heat. (Qst) 
o 1.B Focus Area: Optimizing Sorbent Binding Energies (starts Q3-FY19) 
o 1.C Focus Area: Optimizing of Sorbent Packing (rev. only slide) 
o 1.D Dynamic Sorbent Materials (Starts Q4 FY19) 

• Task 2 Hydrides 
o 2.A Focus Area: MH Thermodynamics 
o 2.C Focus Area: Activation of B-B and B-H Bonds 
o 2.D Focus Area: Nanoscaling to improve thermodynamics and kinetics 

• Task 3 Hydrogen Carriers 
o 3.C Focus area: Liquid hydride systems as hydrogen carriers (eutectics, ionic liquids, etc) (rev. only slide) 
o 3.D Focus area: Investigation of adsorbents as hydrogen carriers. (Porous liquids) 
o 3.E Focus area: Bioinspired materials as hydrogen carriers (starts Q3-FY19) 
o 3.F Focus area: Plasmonic ‘on-demand’ hydrogen release in hydrogen carriers 
o 3.G Focus area: Heterolytic cleavage and activation of hydrogen (FLPs) (Starts Q4-FY19) 

• Task 4 Development of Advanced Characterization Core Capabilities 
o 4.A Focus area: High temperature validated PCT system 
o 4.B Focus area: PCT calorimetry (start Q3-FY19) 
o 4.D Focus area: in-situ and ex-situ X-ray (SLAC), Neutron (NIST), Raman and DRIFTS characterization techniques 
o 3.B.4 Liquid Hydrogen Carrier Capacity Determination (Starts Q4-FY19) 

• Task 5: Research Support for HyMARC Seedling and Lab Call Initiatives 
o 5.A. Validation, Characterization support 
o 5.C Support of DOE-FOA. 

• Task 6: HyMARC Data Hub (rev. only slide) 
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Accomplishment:  Task 1a Enthalpy/Entropy and Isosteric Heat. (Qst)

PEMP Milestone completed: Isosteric heats with Cryo-PCT
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• To test Cryo-PCT, determined Qst of known material
• Good agreement with literature
• Several issues were realized that could influence 

Qst determination
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Accomplishment:  Task 1a Enthalpy/Entropy and Isosteric Heat. (Qst)

Issues Investigated with Isosteric Heat Determination
• Experiment, Analysis, Interpretation
• Supercritical region especially 

problematic
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Accomplishment:  Task 1a Enthalpy/Entropy and Isosteric Heat. (Qst)

Issues Investigated with Isosteric Heat Determination
• Approach:  Sources of bias in Qst explored using isotherm modeling
• Explicit T dependence in isotherms can introduce bias
• This can lead to mis-interpretation of the results

Pairwise Isosteric Heat Calculation vs Temperature
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NREL Modeling
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Accomplishment:  Task 1a Enthalpy/Entropy and Isosteric Heat. (Qst)

Issues Investigated with Isosteric Heat Determination
• Other issues that have been investigated or are being investigated:

o Effect of isotherm calibration error on Qst
o Excess vs absolute isotherms and Qst
o Best way to fit isotherms for Qst analysis to minimize error & bias
o Understanding double Langmuir and its Qst determination

• Future Work:
o Changing Qst calculation to include non-ideality
o Further investigating supercritical issues for Qst
o How heterogenous sites effect Qst and can optimize material
o Validity of van’t Hoff with respect to isotherm equations
o Can a detailed equilibrium constant examination provide 

additional insight into adsorption mechanics?
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Approach: Task 2c Activation of B-B and B-H Bonds 

[1] Severa et al., ChemPhysChem 2019, 20, 1–5 (HyMARC)
[2]  Severa et al., Chem. Commun., 46, 421–423 (2010)
[3] PNNL: Chong et al., Inorganics, 5, 89 (2017)

TH
F

at RT

Reactor with
MgB2 or Mg(BH4)2

powder

THF

The reactor can be heated.

Experimental:

Setup

Pulse Sequence
THF

500 ms

Purge 
and 

Pump
10 s

THF
500 ms

Purge 
and 

Pump
10 s

time

Relevance:
Facilitate H2 adsorption in MgB2
and Mg(BH4)2 systems
Approach: 
Additives: Disrupt the Mg-B matrix by 
adding organics, 

e.g. THF incorporation based on 
previous HyMARC work1-3

Uniqueness of this project:
• Vapor phase transport of THF to 

control the amount of THF 
incorporated.

• Attempt to vary/control  the pathway 
of THF ”incorporation” as compared 
to ball milling.
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Accomplishment: Task 2c Activation of B-B and B-H Bonds

Sample MgB2 + 
25 p THF @ 350 °C 

MgB2- Neat 

Mass (mg) 134 329 

Degas Temp (˚C) 250 250 

Dosing Temp (˚C) 250 250 

Time (hrs) 50 48 

Nominal Pressure (bar) 120 127 

Total DP (bar) 0.570 0.678 

H2 adsorbed (mmol) 0.170 0.202 

H2 adsorbed (mg) 0.339 0.403 

Wt % 0.25±0.05% 0.12±0.02% 
 

Initial results from the PCT at 250 ˚CThermal Programmed Desorption

Initial results suggest:
Ø Increase in H2 capacity compared to blank MgB2 by ~2x
Ø Decrease of H2 desorption temperature compared to blank MgB2 by ~80˚C

MgB2+THF results for H2 absorption
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Accomplishment: Task 2c Activation of B-B and B-H Bonds

Initial results suggest:

Ø The THF treatment at 250˚C has an 

intense and sharply defined desorption 

peak at T~320˚C with a secondary peak at 

T~380˚C.

Ø Decrease of H2 desorption temperature 

compared to blank (by ~60˚C). This is 

probably mainly due to the heat 

treatment only. 

Ø Low temperature peak at ~300˚C 

correlates with formation of !- Mg(BH4)2.

Ø The intensity of this peak, however, hints 

to a different THF-induced H2 desorption 

pathway.  Note:  Only negligible amounts 

of THF evolve at ~130˚C. 

Mg(BH4)2+THF H2 desorption
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Relevance: Task 3 D Investigation of adsorbents as hydrogen carriers. 
(Porous liquids)

Conventional liquids only have extrinsic porosity, i.e., small transient and ill-defined 
pores, while the three types of porous liquids have intrinsic permanent porosity. 

Benefits:
• Decreased sorbent packing 

penalties
• Degrees of freedom 

increased
• Liquid transport options
• No solvent contaminants if 

type 1
• 2 %w/w material with 

density of 1g/ml could 
deliver 500kg H2. (current 
tech is 250 kg H2(g))
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Approach: Task 3 D Investigation of adsorbents as hydrogen carriers. 
(Porous liquids)

• COFs could provide unparalleled fine-tuning of gas selectivity/separation in porous liquids
• Consideration to (1) COF particle size, (2) COF pore size & co-solvent, (3) Functionalization 
• Functionalization strategies: click chemistry of liquid polymer chains and/or tethered ILs
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“Click” Chemistry

Surface(Engineering(
Dissolu1on(in(

Size3Excluded(Solvent(

Organic(Framework(
Powder(

Framework(Func1onalized(with(
Liquid(Polymer(Chains(

Porous(Liquid(

Click Chemistry Functionalization of COF 

Approach: Task 3 D Investigation of adsorbents as hydrogen carriers. 
(Porous liquids)
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Accomplishment: Task 3 D Investigation of adsorbents as hydrogen 
carriers. (Porous liquids)

• DRIFTS results support 
that the click-chemistry 
synthesis was successful.

• Broadening of amine N-H 
stretch indicates chemical 
interaction.

• N3 and C-Br stretches are 
only present in the 
relevant samples.

• New peaks (dashed lines) 
formed with the addition 
of TFSI are attributable to 
TFSI.

• MILESTONE achieved
2 NREL    |    2
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Accomplishment: Task 3 D Investigation of adsorbents as 
hydrogen carriers. (Porous liquids)

COF-300
Traditional Synthesis > 10 !m particles

Suspension in CH3CN

T0 1 h 24 h

Colloidal Synthesis, DLS vs time data
Suspension in CH3CN

T0 1 week

< 200 nm

~200 nm

Successful synthesis 
of small particles 
and colloidal 
suspension

TPD and “frozen” 
PCT are underway
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Relevance:  Task 3 Plasmonic ‘on-demand’ hydrogen 
release in hydrogen carriers

Plasmonic nanostructures concentrate photon 
energy and can produce heat via the localized 
surface plasmon resonance (LSPR)

o plasmonic nanostructures act to locally and
temporally heat a limited region

o LSPR and its local intensity is determined by the
material shape, size and crystallinity

Plasmonic Hot Carriers - using low-energy photons,
generate high energy electrons and holes

Utilize low energy light source to induce hydrogen 
sorption/desorption reactions and phase changes 

thermally and/or electrochemically Pix from: 
https://www.differ.nl/vac
ancies/internship-nea
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Accomplishment: Plasmonic ‘on-demand’ hydrogen release in 
hydrogen carriers

Mix: 20 nm TiN with 
Mg(BH4)2 or MgH2
ALD: Atomic layer 
deposition of TiN on 
Mg(BH4)2
MBH: Mg(BH4)2

• 700 nm no hydrogen evolution
• 625 nm (plasmonic heating)

only H2 and B2H6 observed
• 385 nm (hot carrier)

H2, B2H6 and possibly B3H8, and 
B2H7 observed

Preliminary Indications:
Non-optimized 
625 nm – thermal degradation
385 nm – electrochemical reaction
Dual illumination and in-situ studies 

underway

Time (min)

Hydrogen Desorption using Photons – Mg(BH4)2 and MgH2

LEDs: 385 nm, 625 nm, 700 nm

Mg(BH4)2
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Accomplishment: Task 4a,High temperature validated PCT 
system 
• Provide high temperature PCT validation capability
• Fluidized Bed: T: 30 – 400 ±0.5°C
• Validation using palladium 
• Milestone achieved
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Accomplishment: Task 4 SLAC capabilities
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Accomplishment: Task 5 NREL Seedling Support FY18 – 19

NaBH4 graphene encapsulation seedling (ANL)
Ø Multiple samples were characterized at 

NREL using TPD-MS (two heating methods), 
TGA, TEM to determine the extent and 
effect of graphene encapsulation on NaBH4 

Additives to MgB2 by mechanical milling 
seedling (University of Hawaii)
Ø Ball milled samples were examined by NREL 

for H2 capacity using TPD-MS and TGA

Fluorinated and metalated COFs seedling 
(NREL)
Ø Two series of metalated COFs were 

characterized for H2 sorption properties at 
NREL via TPD-MS; BET SSA and PSD via 
nitrogen physisorption

Ø For one COF, heat treatment for Cu-metal 
reduction was determined by use of TPD-MS 
and TGA

Ø A series of fluorinated COF pellets were 
characterized using nitrogen and carbon 
dioxide physisorption for effect that 
compression had to BET SSA and PSD

ALD on Mg(BH4)2 seedling (NREL)
Ø General support of TPD, XRD, SAXs 

experiments toward milestones

Electrolyte Assisted Hydrogen Storage Reactions 
(Liox Power)
Ø General support of TPD analysis to 

determine the composition of the hydrogen 
desorption stream

HyMARC Seedling 
Support FY18 (∼ 1 FTE 

for 6 months)
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Summary: FY 18 -19 Results Update
• No-go on modified CN2 materials
• No-go on compaction of PEEK materials
• Established a collaboration with Mike Toney at SLAC. Dr. Nick Strange (pd)
• Multiple samples for Seedlings were characterized across multiple labs for assessment by 

DOE for go/no-gos
• Variable temperature cryostat controlled PCT apparatus was repaired and re-validated
• DOE PEMP Milestone achieved:  Milestone:  Determine the isosteric heats of appropriate 

Framework/Sorbent material from the materials section of this AOP with the variable-
temperature PCT apparatus at the 5 discrete temperatures that span 77 K to 323 K

• All FY18 Milestones were completed
• FY 19-22 HyMARC AOP was completed

o Initiated new materials synthesis, characterization and carriers projects
o Established multiple collaborations across HyMARC teams

• www.hymarc.org webpage updated and active
• New NDA for HyMARC team and seedlings 
• Multiple focus area meetings both FTF and video

Note: FY18 budget was 50% of original plan, all original milestones/deliverables were
renegotiated. In August 18 we received funding for initiation of FY19 Phase 2 HyMARC projects.
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Future Work & Challenges
Subject to change based on funding levels

• Establish desired ∆G, ∆H, and ∆S for hydrogen storage and carriers
• Determine if metal-catechol modified PEEK materials sites are viable 
• Evaluate gated sorbents
• Validate the volumetric capacities for monolith materials
• Optimize the additives in MgB2 through vapor infusion
• Will ionic liquid borohydrides form eutectic-like systems with metal hydrides
• Evaluate neat porous liquids as carrier sorbents
• Optimize the plasmonic interactions for quick release/adsorption of hydrogen
• Initiate the bio-inspired and FLP-heterolytic systems for hydrogen storage 

applications
• Support seedlings in Phase 2
• Begin the development of a PCT calorimetry with PNNL
• Validate performance of in-situ Raman spectroscopy system
• Validate both hydride and sorbent samples as designated by DOE
• Continue to improve the DataHub
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Major Goals
• Advance the foundational understanding, develop and characterize the next 

generation hydrides and/or framework and/or templated materials and/or 
carbon-sorbents within the hydrogen storage matrix that results in 
experimental control of:

– Desorption temperatures

– Volumetric and gravimetric capacities

– Kinetic and thermodynamic contributions

– Materials intrinsic physio-chemical properties

– Sorption and delivery pressures 

• Demonstrate: 

o Volumetric capacities in excess of 50 g/L, to approach the doubling of energy 
density of 700 bar tanks.

– Targeted enthalpies in the ideal range of 12-25 kJ/mol

– Acceptable gravimetric/volumetric capacities and the ability to deliver on-
demand H2 at an appropriate rate and pressure for hydrogen fuel cell 
vehicles at temperatures approaching 298K and initial overpressure <100bar.

o Pathway to viable hydrogen carriers and long term storage materials

– TEA and materials metrics

– New materials development
§ Define thermodynamic requirements for room temperature adsorption/desorption

§ Porous liquids, eutectics, modified PEEK, FLPs, photocatalysis, compaction improvement.
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Isosteric Heat Calculations
• 3 common ways to calculate isosteric heat

o !"#$%&%' (: *+, = ./0 1$2 3
1/ 4

= −. 1$2 3
1 6

/ 4

o 7%8&9:'%;:< (: *+, = ./6/0
$2 =30 36
/0>/6 4

o Ln(P) vs 1/T line fit

• Objective:  Explore implications of equations through models.
• How do the model’s functional form influence Qst calculations, 

and more importantly, their interpretation?

Assumptions:  
ideal gas & adsorbed specific volume is negligible.
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Double Langmuir With ! Factor From Literature

• Used a double Langmuir with !
factor to fit multiple isotherms at all 
temperatures

• Had a term that was used to account 
for excess to absolute conversion

• Used the absolute result to 
determine Qst at different loadings 
and temperatures

• Choice of isotherm fit dominates the 
Qst results and does not describe the 
material

Excess

Absolute



29

Fractional Coverage
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From NREL’s Qst calculation

Mertens Calculated Qst

• Mertens & NREL results are nominally identical.
• Qst interpretation:

– Mertens interprets that Qst changes with temperature & coverage
– NREL isotherm modeling shows this interpretation is wrong and is an artifact of the initial choice of the 

isotherm fit
– Instead there is intrinsic bias with the ! term, and additionally and independently, just reflects how 

the two sites populate with temperature and coverage (see double Langmuir example)

Mertens - 2009

E1=2995 J/mole
E2=3814 J/mole
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Isosteric Heat for Double Langmuir Model

• General Trends:
– As expected, high energy sites tend to get filled first
– Higher temperatures smear out this trend
– Qst is just a weighted differential average of how the two sites 

are filled as a function of coverage and temperature

77 K

298 K

Qst Comparison at different site proportions:
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Accomplishment: Task 3 D Investigation of adsorbents as 
hydrogen carriers. (Porous liquids)

COF 300 growth during synthesis


