

PNNL Effort in HyMARC

Tom Autrey, Mark Bowden, Abhi Karkamkar, Bojana Ginovska, Kat Grubel, Eric Wiedner, Kriston Brooks, Rahul Kumar, Andy Lipton, Chitra Sivaraman Iffat Nayyar, Marina Chong Angelina Gigante, Hyangsoo Jeong, Teng He

Pacific Northwest National Laboratory May 1, 2019

Project ID: ST132

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Phase 1: 10/1-15 to 9/30/18
- Phase 2: 10/1/18 to 9/30/22
- Project continuation determined annually by DOE

Budget PNNL

FY18 Phase 1 \$800K FY18 Phase 2 \$1,050K FY19 Phase 2 \$400K* *through 3/31/19

Barriers

- General:
- A. Cost; B. Weight and Volume; C. Efficiency; E. Refueling Time
- Reversible Solid-State Material:
- M. Hydrogen Capacity and Reversibility;
- N. Understanding of Hydrogen Physi- and Chemi- sorption; O. Evaluation Facilities.
- Hydrogen Carriers

Partners/Collaborators

- NREL Tom Gennett, Phil Parilla
- NIST Craig Brown, Terry Udovic
- LBNL Jeff Long, Hanna Breunig
- HyMARC Brandon Wood, Vitalie Stavila
- Hawaii Craig Jensen
- DICP P Chen, T He
- Geneva H Hagemann, A Gigante
- AIST Q Xu, Y Himeda, H Kawanami
- KIST Hyangsoo Jeong, Chang Won Yoon
- Erlangen Nuremberg K Müller

Relevance

We build upon the guidance provided by Hydrogen Storage Centers of Excellence

PNNL leverages unique capabilities to assist material developers:

- Solid-state in-situ high-pressure variable-temperature ¹¹B,¹³C,¹⁵N NMR (to identify key intermediates involved in the release and uptake of H₂),
- Solid-state low temperature ¹H and ²H NMR (5 300 K) to investigate physi-sorption of H₂, ultimate goal to validate > 2H₂/metal site.
- Variable pressure reaction calorimetry to experimentally determine enthalpy of H₂ addition in solid and liquid hydrogen stores (high pressure cells unique to PNNL)
- Characterization of liquid carriers: kinetics (constant P and V reactors to monitor pH, pressure, and temperature); spectroscopy (in-situ NMR, reactIR, LCMS); thermodynamics (calorimetry, DSC/TGA/MS and PCT); gas purity (RGA, IR, GC)

Goal of Consortium:

- to assist materials developers to measure (and validate) critical properties to increase energy density
- to develop and enhance FCTO hydrogen storage **core characterization capabilities**
- to validate <u>new concepts</u> for input into predictive models that will accelerate progress of materials developers and improve approaches to onboard H₂ storage and hydrogen carriers

accelerate discovery of process through leveraged expertise

- Hawaii PCT cycling Mg(BH₄)₂ (Craig, Phuong, Sunil)*
- KIST Physiochemical properties formate (Hyangsoo, Chang)*
- HI ERN chemical compression formic acid (Karsten)**
- AIST High pressure NMR in–situ solution NMR (Qiang, Yuichi)**
- Geneva ¹¹B NMR, calorimetry unsolvated Mg(B₃H₈)₂ (Hans, Angelina)
- DICP Reaction calorimetry ΔH_{H_2} (aqueous organics) (Teng, Ping)*
- NREL ¹¹B NMR of BH₄ compounds (Tom G, Bob, Noemi, Steve)
- NIST NVS of THF_XMg(¹¹BD₄)₂ complexes (Mira, Terry)*
- LBNL Low temperature ²H NMR Mg-dobdc (Hiro, Jeff)
- SNS INS of FLPs (Timmy, Luke, Martin)
- LLNL interface of materials & chemistry in complex hydrides (Brandon)

* joint publications (** two publications)

Dynamic link between theory & experiment

- Use theory to guide experiment and interpret complex results
 - Predict key intermediates and products based on thermodynamics
 - Binding energies of additives to hydrides
 - dynamics of adsorbed H₂
- Use experiment to benchmark and validate theory
 - Propose and test chemical reaction pathways
 - NMR to follow evolution of H₂ release pathways (key intermediates and products)
 - Measuring thermodynamics and kinetics of H₂ uptake and release

Overview – work structure - phase 2

Task 1 Sorbents

- 1.A: Enthalpy / Entropy (LBNL, NREL, PNNL) Bowden, Lipton, Ginovska
- Task 2 Hydrides
 - 2.C.2 Modeling of B-B bond activation (SNL, LBNL, LLNL, PNNL) Ginovska
 - 2.C Activation of B-B and B-H Bonds (SNL, LBNL, NREL, PNNL) Autrey
- Task 3 Carriers
 - 3.A Alternate electrochemical approaches to produce hydrogen carriers (Wiedner)
 - 3.B.2 Aqueous organic carriers (PNNL, DICP) Autrey, Brooks
 - 3.B.3 Formate/Bicarbonate cycle (PNNL, KIST) Grubel
 - 3.C.1 Magnesium borohydride melts (PNNL, NREL) Autrey
 - 3.D.2 Porous liquids as hydrogen carriers (NREL, PNNL, LBNL, LLNL) Ginovska, Karkamkar
 - 3.G.1 Frustrated Lewis acid-base pairs (PNNL, NREL) Bowden, Ginovska

Task 4 Capability Development

- Hydrogen Carrier Characterization (PNNL) Karkamkar, Grubel
- Advanced NMR Spectroscopy (PNNL) Lipton, Bowden
- Task 5 Seedling support
 - Technologist with NMR expertise (PNNL) Lipton, Bowden
 - Technologist with Liquid H₂ Carrier expertise (PNNL) Grubel, Karkamkar, Autrey

Task 6 Data Hub

support (PNNL) Sivaraman

Accomplishments using theory to gain insight into dynamics Sorbents. 1.A: Enthalpy / Entropy vs temperature

Bojana Ginovska

7

Enthalpic ($\triangle H$) and Entropic ($\triangle S$) contributions in solid state systems can be accounted for using:

- 1. Harmonic or quasi-harmonic approximation, where frequencies are calculated from an optimized minimum energy structure (CP2K, VASP and Phonopy)
- 2. Ab initio molecular dynamic simulation (AIMD), where the frequencies are calculated from trajectories propagated over time, capturing non-harmonic effects (CP2K)

AIMD simulation of H₂ movement in a CP2K using DFT showing dynamics 75 K.

Orange spaghetti plot are H_2 within 3.5 Å of cobalt cation in dobdc, showing H_2 dynamics.

Take home: Combining theory (AIMD) and experiment (NMR) will provide insight into changes in ΔS and ΔH with temperature

Accomplishments using theory to down select pathways Hydrides. 2.B Modeling B-B bond activation

Take home: Compare thermodynamics for > 20 different pathways to and from $B_{10}H_{10}$. Provide insight into the most likely pathways.

Are the key intermediates:

 $B_2H_6^{2-}$ (need to activate H_2B-BH_2 bond) or B_2H_7 - (need to stabilize BH_3)

Iffat Nayyar

8

Reaction Path (1)	ΔE_{static}	ΔH _{vib}	ΔH^{t}_{vib}	∆G ^t _{vib}	∆S ^t _{vib}	
	Т = ОК			T = 300K		
	kJ/mol rxn			J/mol rxn K		
$Mg(BH_4)_2 \rightarrow MgB_2H_6$						
(1) $Mg(BH_4)_2 \rightarrow MgB_2H_6 + H_2$	66 (66)	47	49	22	93	
$MgB_2H_6 \rightarrow Mg(B_3H_8)_2$						
(2) MgB ₂ H ₆ + $^{1}_{3}$ H ₂ $\rightarrow ^{1}_{3}$ Mg(B ₃ H ₈) ₂ + $^{2}_{3}$ MgH ₂	52 (155)	52 (156)	50 (151)	61 (184)	-36 (-109)	
(3) $6MgB_2H_6 + 4H_2 \rightarrow Mg(B_3H_8)_2 + 3Mg(BH_4)_2 + 2MgH_2$	-40 (-10)	16 (4)	4 (1)	120 (30)	-388 (-97)	
(4) $4MgB_2H_6 + 2H_2 \rightarrow Mg(B_3H_8)_2 + Mg(BH_4)_2 + 2MgH_2$	90 (45)	110 (55)	102 (51)	162 (81)	-202 (-101)	
(5) $2MgB_2H_6 + Mg(BH_4)_2 \rightarrow Mg(B_3H_8)_2 + 2MgH_2$	221	203	200	205	-16	

Accomplishments – multiply pathways to get to same place

Hydrides. 2.C Activation of B-B and B-H Bonds

purple n = 3, but discovered two new phases identified green n = 2, blue n = 2/3

Pacifi

Proud

965

Accomplishments Regeneration of BH₄ from <u>solvent free Mg(B₃H₈)</u>₂ Hydrides. 2.C Activation of B-B and B-H Bonds

Do you need weeks at 80 bar and 200 °C to regenerate BH₄ from solvent free B₃H₈? **No, hours at 100 °C and 50 bar – but need MgH₂**

 MgH_2 and H_2 present lead to the expected BH_4 as the major product. In the absence of MgH_2 see additional boranes, e.g., $B_{12}H_{12}$

Before and after showing solvent free B₃H₈ conversion to BH₄

wt%

 B_3H_8 Max H_2

density ca. 2.4

Can combine in-situ solid state NMR with solution NMR to get a more accurate picture of key intermediates

Andy Lipton

Accomplishments developing protocol to quantify intermediates in reversible pathways Pacif Hydrides. 2.C Activation of B-B and B-H Bonds Prot $Mg(B_{3}H_{8})_{2} + 4MgH_{2} + H_{2}$ $Mg(B_3H_8)_2$ Angelina Gigante 12 ^{0.3} 3.1 Liquid state ¹¹B NMR of 11.3 15.4 $Mg(B_{3}H_{8})_{2}+4MgH_{2}+H_{2}$ $Mg(B_3H_8)_2$ 57 85psi 200 °C $Mg(B_2H_7)_2$ 72.4 2.4 $MgB_{12}H_{12}$ Take home: THF-D₂O THF-D₂O 1.5_0.05_3.4 $MgB_{10}H_{10}$ 1.3 Solution NMR provides (B_xH_v)ⁿ⁻ higher resolution to H₃BO₃ 95 B(OH)₄observe minor products 84 $Mg(BH_{4})_{2}$ DMSO-d6 **Different solvents** DMSO-d6 0.2 3.2 0.7 provide different 1.1 0.9 _____ 5.5 3.1 looks (stability and 17.4 solubility of 94.8 2.3 70.7 intermediates

CD₃CN

Highlight - systematic effort to understand the limitations to cycling $Mg(BH_4)_2 \Leftrightarrow MgB_{10}H_{10}$

Max H₂ density ca. 5.8wt% .25THF Mg(BH₄)₂

Thermodynamically feasible - but – how is it possible to reduce a closoborane, MgB₁₀H₁₀ to Mg(BH₄)₂ < 200 °C and < 100 bar H₂?

Craig Jensen

- PCT cycling (Hawaii)
- TPD/MS and DSC (NREL)
- Synchrotron XR (Norway)
- NVS (NIST)
- In-situ NMR, XRD, IR, RAMAN, calc ΔG (PNNL)
- Solvent free (Geneva)
- Thermodynamics favor regen of Mg(BH₄)₂ from MgB₁₀H₁₀ (ΔH ca. 38 kJ/mol)
- Additives, e.g., THF lower the mp of Mg(BH₄)₂.
- Sub-stoichiometric amounts, e.g., <1 THF/Mg results in a mixture of phases.
- Mixture melts between 70 100 °C to yield common amorphous phase.
- The melt amorphous phase is stable until ~ 180 °C, when H₂ is released to form B₁₀H₁₀ as the major product.
- Cycling limitations, heating too long or cooling to room temperature stops ability to cycle.

Hydrogen carriers – task 3 work structure

Task 3 Carriers

- 3.A Electrochemical approaches to produce hydrogen carriers (Wiedner)
 - Formation of H₂CO₂ from electrons, CO₂ and water
 - Current SOA; Dioxide Materials and O-CO
 - Future work address the selectivity's, electrode material, HCO₂- or H₂CO₂
- 3.B.1 Dehydrogenative coupling (Nune)
 - no go
- 3.B.2 Aqueous organic carriers (PNNL, DICP)
 - Accomplishments: Kristons thermodynamic analysis for H_2 efficiency as function of ΔH and desired H_2 pressure (Chemical compression)
- 3.B.3 Formate/Bicarbonate cycle (PNNL, KIST) Grubel
 - Accomplishments: Karstens analysis
 - Progress: Show physiochemical properties
 - Future work: electrochemical cycle FS/BCS what are the possibilities?
- 3.C.1 Magnesium borohydride melts (PNNL, NREL Hawaii, Geneva) Autrey
 - Ionic borohydrides (NREL)
 - Solvated contact ion pairs
 - Concept and future work need solvated ion pairs to enhance MH formation,

Approach Dynamic connection between materials research and TEA

Accomplishments – PNNL and ANL webinar Dec 7th 2018

https://www.energy.gov/eere/fuelcells/downloads/hydrogen-carriers-bulk-storage-and-transport-hydrogen-webinar

February 17th brainstorming meeting on H₂ Carriers (PNNL, LBNL, NREL, SNL)

Take home: Hymarc will use TEA to help DOE identify material targets for H_2 carriers applications

Concepts Chemical compression from formic acid

Max storage density ca. (FA) 53 g H_2 /liter; generate >700 bar pressure

Top challenges

- Separation of H₂ from CO₂ at high pressure
- Preparation of H₂CO₂ by electrochemical processes

Karsten Mueller

a) Schematic of a H₂ fueling station provided via trucks with pressurized hydrogen

b) Schematic of a H₂ fueling station based on a low pressure hydrogen source

c) Schematic of a H₂ fueling station using hydrogen carrier releasing H₂ at elevated pressures

Releasing Hydrogen at High Pressures from Liquid Carriers: Aspects for the H₂ Delivery to Fueling Stations. Energy & Fuels. DOI:10.1021/acs.energyfuels.8b01724

Concepts Chemical compression

Carriers. 3.B.2 Aqueous organic carriers

Take home: Modeling will help to identify the optimum balance between chemical and physical compression

How critical is a low ΔH – if you can burn H₂ from a higher density carrier to reach a greater overall efficiency?

- Distribution between pressure generation at reactor (chemical compression) and at compressor (physical compression)
- Calculate Efficiency for a range of ΔH (30-65 kJ/mol H₂) and pressures (1 250 bar)

Kriston Brooks

16

Max storage density ca.

(DBT) 56 g H₂/liter

(NEC) 53 g H_2 /liter

Task 3 Carrier Formate/Bicarbonate cycle (PNNL, KIST)
Water provides ¹/₂ the H₂

$NaHCO_2 + H_2O \Leftrightarrow NaHCO_3 + H_2 \qquad \Delta G \sim 0$

Hyangsoo Jeong

- Storage capacity stored as a solid salt – add water later*
- Deliverable capacity limited by solubility of formate
- Usable capacity limited by solubility of bicarbonate

*Is a formate salt a potential approach to store H_2 seasonally – "56 g H_2 /liter"

Future work: concept of H₂ generation continuously 3.B.3 Formate/Bicarbonate cycle

- Concept: generate HCO₂- in a *first fill* then use electrocatalysis to regenerate formate from bicarbonate
- How do we optimize catalysis for H₂ release?

Kat Grubel

Formate H₂ carrier – continuously generate H₂ from electrons and water

Task 4. Capability Development: Sorbent, Hydrides and Hydrogen Carrier Characterization

Proudly Operated by Battelle Since 1965

Develop and provide access to capabilities to

- support seedling projects
- measure properties to enable TEA
- materials development
- Approach: experimental techniques to measure thermodynamics, rates, capacity, purity, physiochemical properties (pH, solubility)
 - High pressure reactors (Parr reactors, NMR, to measure hydrogen uptake and chemical compression
 - High pressure NMR
 - Gas burette equipped with pH meter, thermocouples with values for microGC, gas phase IR and flow meter, to measure kinetics, gas purity and pH).
 - benchtop NMR and react IR probe to follow evolution of chemical intermediates
 - Combi-catalysis reactors for catalysis studies

Mandatory summary slide

Task 1. Sorbents

- Developing solid state ²H NMR capability 150 K and 100 bar H₂ pressure to provide a complimentary experimental approach to measure binding energies.
- Model Pake pattern to obtain insight into dynamics related to $\Delta S \& \Delta H$
 - Investigating potential of heterolytic sorption of hydrogen (Lewis pairs)

Task 2. Complex Hydrides

- THF_x(Mg(BH₄)₂ (X<1) melts ~70 °C and remains amorphous may act as a 'catalyst' to stabilize and transfer BH₃*THF intermediates
- Observe cycling so long as it remains liquid (working on how to maintain liquid phase)
- Developing NMR experimental protocol for identifying borane intermediates

Task 3. Hydrogen carriers

- Looking at novel concepts and materials. (provide insight to develop targets)
- DOE carriers webinar December 2018
- Hymarc brainstorming February 2019 (defining metrics)

Remaining Challenges and Barriers

An approach to maintain liquid phase of complex hydrides throughout the H₂ release (and uptake) cycle

- Prevent phase separation of less soluble species
- Understanding how the environment controlling reaction pathways (contact ion pairs)

Light weight additives to control reaction pathways in complex hydrides

- **make** $B_{10}H_{10}^{-}$
- **I** make $B_3 H_6^{2-}$ to avoid phase separation of MgH2
- Optimizing balance between physical and chemical compression LOHCs
- Novel approaches to tune thermodynamics of hydrogen carriers to lower 'operating' temperature to release H₂ from hydrogen carriers
- Synthesis of hydrogen carriers without using H₂

Future work Collaborations to optimize properties of LOHC for hydrogen carriers

Proudly Operated by Battelle Since 1965

KIST (Korea) Chang Won Yoon and Hyangsoo Jeong. Catalysts for H_2 release from formate salts.

AIST (Japan) Qiang Xu, Yuichi Himeda and Hajima Kawanami Catalysts for H₂ release from formic acid (MOU)

DICP (Hydrogen storage, conversion and utilization (Jan. 2019 to Dec. 2021) lead by Ping Chen and Teng He with PNNL, Tejs Vegge, Martin Dornheim.

Acknowledgements

Proudly Operated by Battelle Since 1965

Hydrogen Materials - Advanced Research Consortium (HyMARC), established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office.

Pacific Northwest National Laboratory is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830.

Publications

- Yang Yu, Teng He, Anan Wu, Qijun Peia, Abhijeet Karkamkar, Tom Autrey, Ping Chen. Reversible hydrogen uptake/release over sodium phenoxide-cyclohexanolate pair. *Angew. Chemie Int. Ed.* 2018. DOI: 10.1002/anie.201810945R2.
- Mark D. Allendorf, Zeric Hulvey, Thomas Gennett, Tom Autrey, Jeffrey Camp, Hiroyasu Furukawa, Maciek Haranczyk, Martin Head-Gordon, Abhi Karkamkar, Di-Jia Liu, Jeffrey R. Long, Donald Siegel, Vitalie Stavila, Jeffrey J. Urban, Brandon Wood. An Assessment of Strategies for the Development of Solid-State Sorbents for Vehicular Hydrogen Storage. *Energy and Environ. Science* 2018, doi.org/10.1039/C8EE01085D.
- Qi-Long Zhu; Fu-Zhan Song; Qiu-Ju Wang; Nobuko Tsumori; Yuichiro Himeda; Tom Autrey; Qiang Xu. Solvent-Switched In Situ Confinement Approach for Immobilizing Highly-Active Ultrafine Palladium Nanoparticles: Boosting Catalytic Hydrogen Evolution. *J. Materials Chemistry A*, 6, 5544-5549. 2018. DOI: 10.1039/c8ta01093e.
- Karsten Müller, Kriston Brooks, Tom Autrey. Releasing Hydrogen at High Pressures from Ambient Condition Carriers: Aspects for the H₂ Delivery to Fueling Stations. *Energy and Fuels*. **2018**, **DOI**: 10.1021/acs.energyfuels.8b01724
- Wei Hong, Mitsunori Kitta, Nobuko Tsumori, Yuichiro Himeda, Tom Autrey, Qiang Xu. Immobilization of Highly Active Bimetallic PdAu Nanoparticles to Nanocarbons for Dehydrogenation of Formic Acid. Submitted to J. Am. Chem. Soc. 2019
- Mirjana Dimitrievska, Marina Chong, Mark E. Bowden, Hui Wu, Wei Zhou, Iffat Nayyar, Bojana Ginovska, Thomas Gennett, Tom Autrey, Craig M. Jensen, and Terrence J. Udovic. Solvent addition as a solution for enhancing hydrogen storage properties of magnesium-borohydride. Submitted to J. Materials Chem A. 2019
- Challenges and Opportunities for using Formate to Store, Transport and Utilize Hydrogen. Katarzyna Grubel, Hyangsoo Jeong, Chang Won Yoon, Tom Autrey. Submitted to *Journal of Energy Chemistry* (invited) 2019
- Iffat Nayyar, Bojana Ginovska, Abhijeet Karkamkar, Tom Autrey. Physi-sorption of H2 on pure and boron-doped graphene monolayers: Dispersion-corrected DFT study. Submitted to Carbon. 2019