

Electrolyte Assisted Hydrogen Storage Reactions

John J. Vajo¹, Jason Graetz¹, Dan Addison²,

¹HRL Laboratories, LLC, ²Liox Power, Inc (Lead Lab.)

May 1, 2019

2019 DOE Hydrogen and Fuel Cells Annual Merit Review

Project ID: ST137

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline:

- Project Start Date: 01/20/17
- Phase 2 End Date: 7/14/2019

Budget:

- Phase 2 Budget: \$ 486,750
- Total Recipient Share: \$ 93,750
- Total Federal Share: \$ 375,000
- Total DOE Funds Spent since project start: \$ 271,396 as of 12/31/2018
- Total Recipient Funds Spent since project start \$ 67,849 as of 12/31/2018

Barriers (from 2015 MYRDD)

O. Lack of Understanding of Hydrogen Physisorption and Chemisorption.

Partners/Collaborations

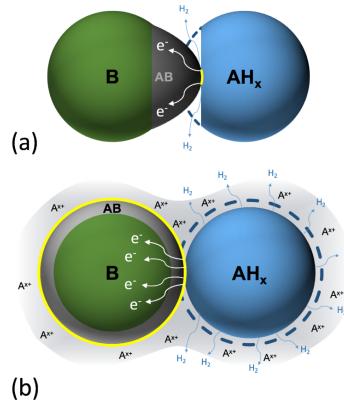
- HyMARC (Sandia, Stavila),
- Caltech (Solid-State NMR)
- Project lead: Liox Power, Inc. with subcontract to HRL Laboratories, LLC

Objectives:

- Overcome kinetic barriers of hydrogen storage candidates with high capacities (and appropriate thermodynamics) for PEM fuel cell use that otherwise contain multiple solid phases that must nucleate, grow, and be consumed during cycling.
- Specific use of salt and borohydride electrolytes to promote solubilization and diffusion of species relevant to hydrogen storage release and uptake.

Fulfillment of Phase 1 Accomplishments in 2018:

- Demonstrated electrolyte assisted hydrogen storage material with
 - 1) cycling of \geq 1 wt% H₂;
 - 2) ≥ 10× rate of hydrogen evolution as compared to systems without an electrolyte and
 - 3) favorable assessment of results indicating a pathway to meet storage targets.
 - 4) Reported on accomplishments, "Electrolyte-Assisted Hydrogen Storage Reactions," Vajo, et al, *J. Phys. Chem. C*, 2018, 122 (47), pp 26845–26850 DOI: 10.1021/acs.jpcc.8b08335



Approach: Electrolyte Assisted Hydrogen Storage Reactions

Necessary to overcome interface-controlled process that normally requires thermal activation.

Addresses Technical Barrier "O" from 2015 MYRDD, specifically "Develop reversible metal hydrides with improved kinetics while maintaining high gravimetric capacity at relevant release temperatures and pressures," from Table 3.3.8.

• Solid-state reactions $AH_x + B \rightarrow AB + x/2H_2$

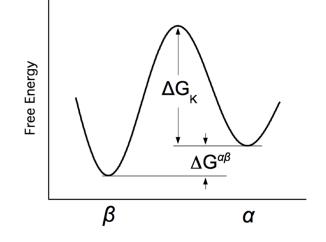
Reaction rate and transport are limited by relatively small solid-solid interfacial surface area (yellow).

• Electrolyte assisted reactions $AH_x \rightarrow A^{x+} + xe^- + x/2H_2$ $A^{x+} + xe^- + B \rightarrow AB$

Electrolyte that can solvate A^{x+} facilitates transport and enables reaction to occur over full surface area of B exposed to the electrolyte. (*electron transport still solid-solid but much faster; conductive additives can also be included*)

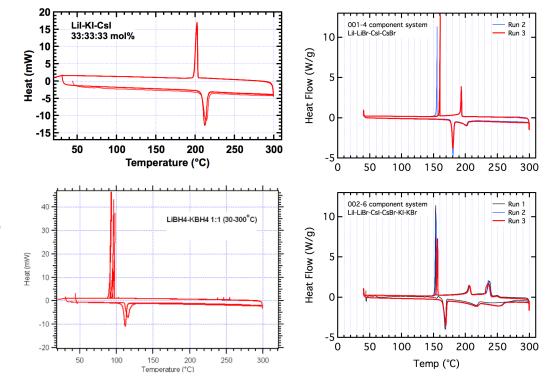
Budget Period 2 and 3 Tasks:

1) Lower the electrolyte content in consort with other processing approaches in order to achieve a full material gravimetric density of ≥ 8 wt% while maintaining Phase 1 kinetic improvements, and reduce hydrogenation and dehydrogenation pressure/temperature levels in Mg-B-H system levels to normal laboratory attainable conditions, minimizing reliance on the highpressure system at Sandia.


2) Survey and test promising systems with ≥ 4 wt% full material density that better fulfill the goal of technological viability, but that have not been used due to limitations in cycling, contamination, or kinetics and where these limitations might be overcome through the use of electrolytes.

3) Test and evaluate electrochemical systems to supplement or supersede the solely thermochemical (i.e., temperature- and pressure-based) free energy driving forces currently used to direct hydrogen exchange reactions.

Approach: Salt and borohydride electrolytes most stable for this application



- Inorganic molten salts have high level of thermal stability over wide temperature range for (de)hydrogenation.
- can be formulated with components that are chemically inert to hydrogen storage compounds.

Right: DSC traces of some of the molten salt and borohydride mixtures synthesized/used in this effort.

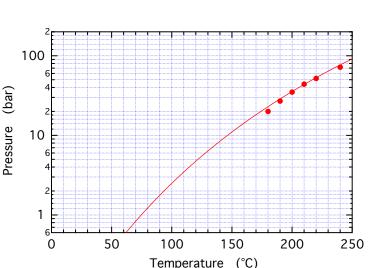
Left: Hypothesize that electrolytes significantly lower the free energy driving force for measurable rates as seen in conversion reactions, e.g. $\Delta G_{K, \text{ solid-state}} \sim 20 \text{ kJ}; \Delta G_{K, \text{ electrolyte}} \sim 4 \text{ kJ}$

Accomplishments:

Assessment of candidate electrolyte-assisted hydrogen storage systems with 4 wt% full material basis hydrogen capacity and \leq 150 °C/100 bar cycling

Criteria:

1) 4 wt% capacity on a full material basis, which including hydride + electrolyte + any catalysts or additives;


2) equilibrium dehydrogenation pressure appropriate for input to a fuel cell of at least 1 bar and preferably 2 bar to 5 bar at \leq 150 °C;

3) hydrogen release rate at \leq 150 °C enabling full release in a typical 300mile drive time of ~5 hr to 6 hr, which for hydride materials with ~5 wt%-H₂ corresponds to rates of ~1 wt%/hr;

4) pressure for rehydrogenation of \leq 100 bar at \leq 150 °C.

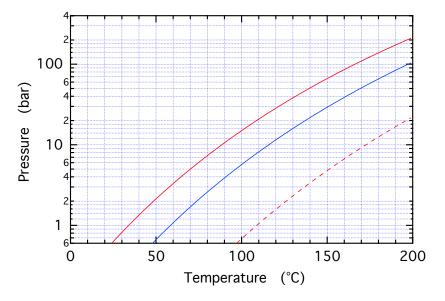
Accomplishments: Assessment of Electrolyte-Assisted systems with 4 wt% capacity at <150 °C 100 bar cycling (cont'd)

Above: Equilibrium pressure for the $Mg(NH_2)_2 + 2LiH$ system. Experimental points from IJHE **37** 6646 (2012).

<u>Criterion 1, 4 wt% capacity</u>: Capacity of Mg(NH₂)₂ + 2LiH system is 5.5 wt%-H₂. Thus, up to ~25%-by-weight of electrolyte/additives can be accommodated while maintaining a full material basis capacity of 4 wt%-H₂. <u>Criterion 2, \geq 1 bar at \leq 150 °C: Equilibrium pressure for this system characterized using isotherms measured at 180 °C to 240 °C [IJHE **37** 6646 (2012)]. Equilibrium pressure (*P*(NH₂/NH)) is given by:</u>

 $P(NH_2/NH) = \exp(-4683.7/T(K) + 13.47)$ and shown fig at left. Extrapolation gives 11 bar pressure at 150 °C and 2.5 bar at 100 °C. Equilibrium pressure is nearly ideal for both dehydrogenation and rehydrogenation.

<u>Criterion 3, ~1 wt%/hr at ≤ 150 °C</u>: Kinetics not characterized extensively. Original isotherms were reported down to 190 °C, while newer formulations containing 4 mol% KH enabled measurements at 180 °C. Using catalyzed material, isothermal dehydrogenation at 200 °C showed 4 wt%-H₂ in 2 hr. The rate was decreasing significantly with the extent of reaction, nevertheless, the average rate was ~2 wt%-H₂/hr. Rate increase by ~10× needed using an electrolyte, cycling at 150 °C possible.


<u>Criterion 4, \leq 100 bar at \leq 150 °C: As discussed above the equilibrium pressure nearly ideal at temperatures between 100 °C and 150 °C.</u>

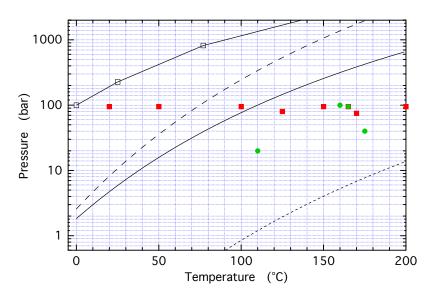
I ABORATORIES

Accomplishments: Assessment of Electrolyteassisted systems with 4 wt% capacity at <150 °C 100 bar cycling

Equilibrium pressures for the sodium alanate system. (solid red) NaAlH₄/Na₃AlH₆; (dashed red) Na₃AlH₆/NaH; and (solid blue) NaAlH₄/NaH, which represents dehydrogenation and rehydrogenation in a single step.

<u>Criterion 1, 4 wt% capacity</u>: Capacity considering first two dehydrogenation steps from NaAlH₄ to Na₃AlH₆ and further to NaH is 5.6 wt%. Thus 4 wt% full material basis capacity can still be expected with up to 30%-byweight added electrolyte. Our budget period 1 effort suggests that desired improvements in kinetics can be realized with this level of additives.

<u>Criterion 2, \geq 1 bar at \leq 150 °C: The equilibrium</u> hydrogen pressures for the two dehydrogenation steps have been well established. As shown in at left, both of these pressures are >~5 bar at 150 °C.


<u>Criterion 3, ~1 wt%/hr at \leq 150 °C</u>: Reported rates for NaAlH₄ catalyzed with 4% TiCl₃ meet Criterion 2 and are likely close to the best rates achieved for this system [J Alloy Com **339** 299 (2002)].

<u>Criterion 4, \leq 100 bar at \leq 150 °C: Achieving</u> rehydrogenation at 120 °C by including an electrolyte would lower the pressure to ~28 bar.

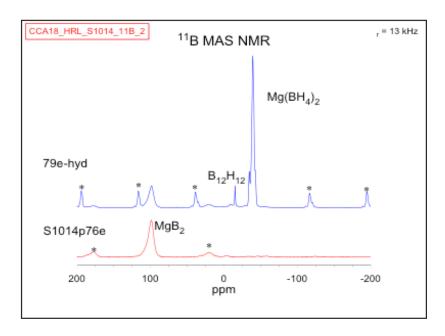
Accomplishments: Assessment of Electrolyte-assisted systems with 4 wt% capacity at <150 °C 100 bar cycling

Above: Compilation of reported equilibrium pressures for dehydrogenation of Li₃AlH₆ to LiH. Open squares: computational estimates at discrete temperatures¹. Long dash: computational estimate using experimental input². Solid line: estimate from HSC. Short dash: experimental estimate³. Filled green circles: various reports claiming hydrogenation. Filled red squares: various reports claiming no hydrogenation.

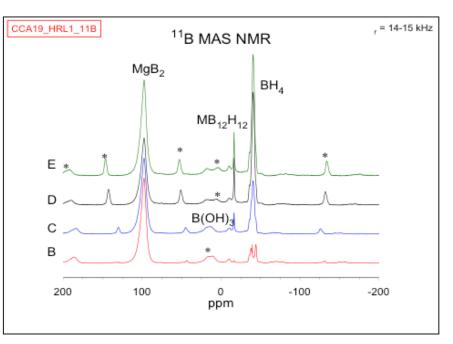
¹PRB **76** 024112 (2007), ²J Alloy Com **420** 286 (2006), ³J Phys Chem B **105** 11214 (2001) <u>Criterion 1, 4 wt% capacity</u>: The capacity for dehydrogenation Li_3AIH_6 to LiH is 5.5 wt%-H₂. Up to ~25%-by-weight of electrolyte/additives can be accommodated maintaining full capacity of 4 wt%-H₂.

<u>Criterion 2, \geq 1 bar at \leq 150 °C: Large uncertainly in dehydrogenation thermodynamics for Li₃AlH₆ to LiH with reported equilibrium pressures at 100 °C (lines in fig at left), from from 1 to 1000 bar. Despite uncertainty, equilibrium pressures likely sufficient for dehydrogenation.</u>

<u>Criterion 3, ~1 wt%/hr at \leq 150 °C</u>: Rates for dehydrogenation of Li₃AlH₆ not quantified thoroughly. Reported dehydrogenation of LiAlH₄ to LiH occurs by ~200 °C in TGA (Li₃AlH₆ step starting at about 120 °C to 150 °C), which corresponds to ~2 wt%/hr.


<u>Criterion 4, \leq 100 bar at \leq 150 °C: Issue of Li₃AlH₆ as a hydrogen storage material is hydrogenation pressure. Marginally acceptable uptake could be achieved at 75 °C by increasing rate by 20×. In budget period 1, such an improvement was seen for hydrogenation of MgB₂ using a Li/K/CsI eutectic electrolyte.</u>

Accomplishments: Pressure reduction hydrogenation reactions, ¹¹B NMR



Phase 1 effort below showed 71% conversion of MgB₂ to Mg(BH₄)₂ under 1000 bar, 320 °C for 50 hrs.

S1014p79e: MgB_2 with the Li/K/CsI eutectic (lower red trace) before hydrogen treatment, another control for 79e-hyd

79e-hyd: MgB₂ with the Li/K/CsI eutectic (upper blue trace) after hydrogen treatment at Sandia.

Initial Phase 2 effort above for MgB_2 to $Mg(BH_4)_2$ under 700 bar, 300 °C for 50 hrs (Stavila). 50 wt% ternary iodide eutectic.

E) 37% conversion (Mgl₂ added).

D) 42% conversion (milled with TiF $_3$ /MgB $_2$ with iodide).

C) 27% conversion (TiF₃ catalyst added, milled with MgB₂).

B) 13% conversion compared to 71%

Issue of B₁₂H₁₂ formation

						F	rom last year
	1	I				1 1	70 wt% eutectic, 1000 bar, 32
Relative ra	tio of 11B sig	gnal strengtl	h, not molar	ratio of idei	ntified speci	ies	$BH_4/(BH_4 + B_{12}H_{12})$ ratio
Bag A	MgB2	Mg(BH4)2	BnHn	B12H12	Oxide cont	aminant	
79e-hyd	0.21	0.71		0.04	0.03		95%
control	0.95		0.02		0.03		-
							•
Bag B	MgB2	M(BH4)x	BnHn	oxide conta	minant		-
79d-hyd	0.94	0.03		0.03			-
control	0.95		0.02	0.03			-
M(BH4)x :	means that t	here is not a	enough sign:	al strength t	o tell if the	metal is Li or Mg.	•
BnHn : rep	resents unkn	own B-H bc	onds observe	ed at ~ -35 n	nm in 11B s	nectrum	

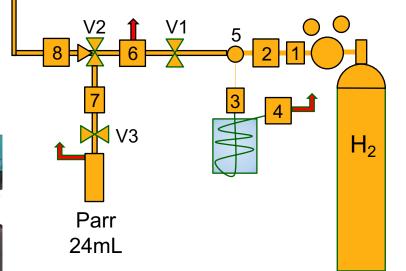
Integration	n ratio			From this year (50 wt% eutectic, 700 bar, 300 °C
	MgB2	intermediates	BH4	$BH_4/(BH_4 + B_{12}H_{12})$ ratio
В	1	0.05	0.16	76%
С	1	0.14	0.43	75%
D	1	0.22	0.87	80%
E	1	0.17	0.68	80%

• Lower ratios (i.e. more $B_{12}H_{12}$) could be from kinetic limitations lower pressure (700 vs 1000 bar) and/or from lower temperature (300 vs 320 °C) or thermodynamic limitations from lower pressure

- next round 350 bar and 320 °C may help clarify

Accomplishments and Progress:

In-house Parr reactor system completed and pressure tested



Valves:

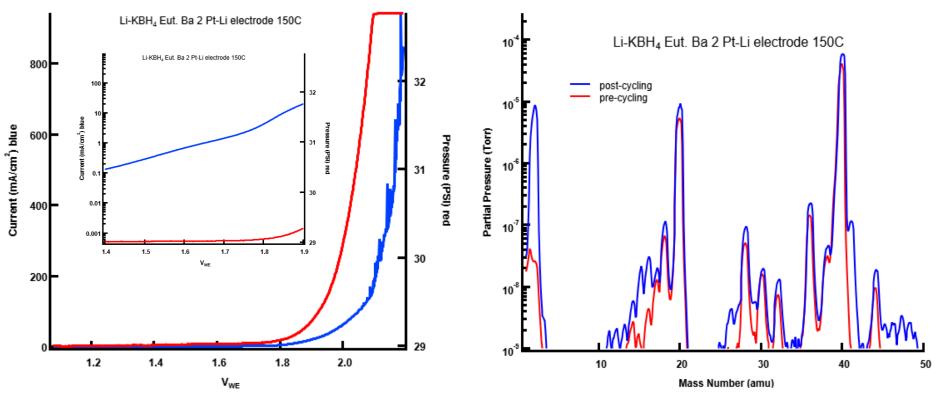
V1: ¹/₈ taper open/close valve V2: ¹/₈ 3-way valve regulated, purge is normally closed, other directions always open V3: valve on Parr reactor


Procedure:

- 1) Open V1,V3
- 2) Cool dead vol to 77K
- 3) Apply 50 bar H₂
- 4) Close Reg (Parr, dead vol connected)
- 5) Remove dewar (pressure goes to 175 bar)
- 6) Close V1,V3 (Parr isolated)
- 7) Heat Parr to 600 K (pressure goes to 350 bar)
- 8) Cool to 300K
- 9) Open V3, V2 (Parr, purge connected)
- 10) Open V1 (Parr, purge, dead vol connected)

- 1) ¹/₄ FNPT to ¹/₈ taper seal
- 2) Check valve
- 3) ¹/₈ taper seal to ¹/₄ taper seal
- 4) Safety rupture disk (6000 psi burst)
- 5) 1/8 taper seal tee
- 6) Safety rupture disk (6000 psi burst)
- 7) 2 micron inline filter
- 8) Check valve

Arrows indicate to fume hood red=emergency All tubing is 1/8 inch unless noted


Accomplishments: Initial electrochemical cell tests

Experimental Cells: Setup allows for gas evolution and pressure/RGA monitoring in situ Pressure Sensor Spring Gas SS mesh Working Electrode (WE) Separator WE Counter electrode/ Reference electrode CE/RE (CE/RE)

Liox Accomplishments: Initial cell tests indicate electrochemically-driven dehydrogenation

Li || LiBH₄-KBH₄ Ba2|| Pt cell, Ar, 150°C

 Linear Sweep Voltammetry shows large increase in current corresponding to a pressure increase

•Post sweep mass spec shows \sim 300x increase in H₂ partial pressure as well as some diborane

Indicates possible electrochemical oxidation of BH₄- (forming H₂ and B/BH₃/B₂H₆)

Collaborators

- Subcontract: HRL Laboratories
- University: Caltech (Hwang, Solid State/NMR)
- HyMARC (Stavila: High pressure reversibility in presence of electrolyte).

- Experimentally test Mg amide/LiH and other low temperature systems with electrolyte
- Improve uptake (conversion) of MgB₂ at 350 bar and 300 °C (e.g., catalysts, mechanical milling)
- Identify lower eutectic temperature systems consistent with electrochemical and thermal stability with engineering viability
- Improved electrolyte-to-active material ratio (e.g. alternative eutectics, hydride particle size)
- Demonstrate electrochemically-driven H₂ evolution and cycling from a solid hydride electrode
- Application to practical systems with high capacities and thermodynamics compatible with fuel cell systems with considerations that include base-material capacity, operating temperature, electrolyte requirements and estimates of ultimate capacity penalties

Milestone Accomplishments Budget Period 2

Milestone 4.1 (Q2): Hydrogenation pressure reduction. (80%)

Milestone 4.2 (Q3): Hydride/electrolyte formulation optimization. (20%).

Milestone 5.1 (Q1): Written Assessment of \geq 4 wt% systems. (100%).

Milestone 5.2 (Q3): Empirical assessment for reversible storage of \geq 4 wt% full material basis gravimetric H₂ capacity with hydrogen cycling under practical conditions. (0%).

Milestone 6.1 (Q2): Initial demonstration of electrochemically promoted hydrogen cycling. (80%).

Milestone 6.2 (Q3): Demonstrate electrochemically promoted hydrogen cycling (both dehydrogenation and rehydrogenation) of \geq 1 wt% H₂ (materials basis) as determined by RGA of H₂ release during cycling. (0%).

Go/No-go Decision point Budget Period 2 (12 months):

- 1) Demonstrate pathway to $\ge 8 \text{ wt}\% \text{ H}_2 \text{ at} \le 350 \text{ bar pressure and } \le 300^{\circ}\text{C}. \ge 10 \times \text{ rate of hydrogen evolution as compared to systems without an electrolyte (100%);}$
- 2) Demonstrate electrochemical pathway to \geq 4 wt% H₂

- Aim of the research and development effort described here is to take electrolyte and electrochemical potential concepts from TRL 1 to TRL 3.
- If concepts prove viable, consideration of these approaches will require an engineering assessment for system and BOP although this may be premature until completion of TRL 5.
- Liox posed to initiate product development, but broader range of markets in addition to transportation difficult to discern.
- IP has been developed as joint HRL/Liox invention.

- Objective: To address kinetics of multi-phase hydrogen storage reactions that are presently severely limited.
- Relevance: Lowering the free energy gap presently necessary to overcome interface-controlled process that normally requires thermal activation.
- Approach: Use of electrolytes and/or electrochemical approaches to "solubilize" or promote diffusion of reacting species.
- Accomplishments: Achieved 8 wt% hydrogen uptake (MgB₂) with 50 wt% eutectic at 1000 bar and 320 °C. Demonstrated hydrogen uptake at lower temperatures and pressures (700 bar, 300 °C). Demonstrated >3x increased uptake with catalysts and milling. Preliminary demonstration of electrochemically-driven dehydrogenation of BH₄-
- **Collaborations**: Caltech (Solid-State NMR), and HyMARC (Sandia)