Novel Plasticized Melt Spinning Process of PAN Fibers Based on Task-Specific Ionic Liquids

Sheng Dai Email: <u>dais@ornl.gov</u> Phone: 865-576-7307

**Oak Ridge National Laboratory** 

2019 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR)

May 01, 2019

Project ID: ST148

This presentation does not contain any proprietary, confidential, or otherwise restricted information

ORNL is managed by UT-Battelle for the US Department of Energy



National Laboratory

# **Overview**

### Timeline

### Barriers

- Project Start Date: 10/01/17
- Project End Date : 9/30/20
- Percent Complete: 58%

### Budget

- Total task funding
   \$900k
- \$257k in FY18
- \$322k in FY19
- \$321k in FY20

- Barriers Addressed
  - A: System Weight and Volume
  - B: System Cost
  - G: Materials of Construction

### Partners

- Project Lead: ORNL
- Interactions/Collaborations
  - 525 Solutions





- <u>Objective</u>: The overarching goal of this proposal is to develop a novel plasticized meltspinning process to replace the current solution spinning process based on nonvolatile task-specific ionic liquids (ILs). The four underpinning research tasks we aim to accomplish in our project are:
  - to investigate how the molecular structures of ILs dictate plasticizing interactions with PAN for controlling glass transition temperatures and rheological properties of PAN-IL composites,
  - to study how the chemical interactions of ILs with PAN can be used to control the cyclization degree in intermediate ladder structures
  - to integrate the information gained from the above two tasks to develop IL-assisted melt spinning systems
  - demonstrate considerably enhanced production efficiencies and improved structural properties of PAN fibers.
- Relevance to Barriers and Targets
  - The ability to melt-spin the PAN into fibers has been identified as a significant cost-driver for high strength carbon fiber production.
  - The fiber production has a direct correlation to the costs of a hydrogen storage system where the carbon fiber cost is 75 % of the total system cost
  - To replace the current solution spinning process with a novel plasticized melt-spinning process based on nonvolatile task-specific ionic liquids (ILs)





# Approach

#### Why Ionic Liquids?

Ionic systems consisting of salts that are liquid at ambient temperatures can act as solvents for a broad spectrum of chemical species.

- Ionicity
- Nonvolatility
- Thermal Stability
- Nonflammability
- Tunable Hydrophobicity
- Wide Liquid-Phase Temperature (-100°C to around 300°C)
- Wide Electrochemical Window
- Tunable Lewis Acidity





Ma, Yu, Dai, Adv. Mater. 2010, 22, 261



#### Approach: Ionic-Liquid Strategy to Nonpolymeric Liquid Precursors for Formation of Carbons under Ambient Pressure

#### **Key Features**

- Nonpolymeric but negligible vapor pressure
- Polymerization strategy toward highly charged and crosslinked polymers
- Liquid precursors for N-doped carbonaceous materials (types of N-dopants and other elements)





J. Lee, X. Wang, H. Luo, G. A. Baker, S. Dai, *J. Am. Chem. Soc.*, 2009, 131, 4596. X. Q. Wang, S. Dai, *Angew. Chem. Int. Ed.* 2010, 49, 6664.

# **Approach: Project Milestones**

|   |                                                                                                                    | %               |
|---|--------------------------------------------------------------------------------------------------------------------|-----------------|
| • | Milestone 1: Investigate how the molecular structures of ILs dictate plasticizing interactions with PAN (FY 17-18) | Accomplished    |
|   |                                                                                                                    | 100%            |
|   | <ul> <li>1.1 Demonstrate &gt; 30 wt% IL solubility in PAN</li> </ul>                                               | 100%            |
|   | <ul> <li>1.2 PAN-IL synthesis with carbon yield &gt; 50%</li> </ul>                                                |                 |
|   | <ul> <li>1.3 Demonstrate &gt; 10 °C decrease in PAN melt temperature</li> </ul>                                    | 100%<br>100% Go |
|   | <ul> <li>Go/No-Go Point #1: Demonstrate &gt; 15 °C decrease in PAN melt temperature</li> </ul>                     | 100 % 60        |
| • | Study chemical interactions of ILs with PAN to control cyclization of degree (FY18-19)                             |                 |
|   | <ul> <li>2.1 Down selection of IL for plasticization</li> </ul>                                                    | 50%             |
|   | <ul> <li>2.2 Demonstration of melt spinning of PAN fibers based on ILs</li> </ul>                                  | 75%             |
|   | <ul> <li>2.3 Technoeconomic analysis for scale-up of the IL production</li> </ul>                                  | 25%             |
|   | <ul> <li>Go/No-Go Point #2: Demonstration of tensile properties of resultant fibers</li> </ul>                     | 50%Go           |
| • | Integrate the information gained form the above two tasks to develop IL-assisted melt spinning systems (FY19-20)   |                 |
|   | <ul> <li>3.1 Preliminary analysis of scale-up</li> </ul>                                                           | 0%              |
|   | <ul> <li>3.2 Scale-up IL to &gt;1 kg production for IL to realize anticipated decreased cost</li> </ul>            | 0%              |
|   | <ul> <li>3.3 Maintain melt viscosity for at least 10 minutes during spinning trials</li> </ul>                     | 40%             |
|   | <ul> <li>3.4 Demonstration of filament diameter of ~20 micrometer after carbonization</li> </ul>                   | 0%              |
| 6 | Sheng Dai AMP May 1, 2010                                                                                          | CAK RIDGE       |

### Accomplishments and Progress: Demonstrate >15 °C decrease in PAN melt temperature

- Ionic liquids as a plasticizer to suppress the melting temperature of PAN
  - Melting temperature for PAN-IL composites are greater than 100 °C lower than neat PAN (~325 °C)
- Generally, for a given PAN wt.% as the carbon chain length is increased for [C<sub>n</sub>mim]<sup>+</sup> the melting temperature is increased.
- Chloride anions suppresses the melting temperature greater than bromide anions for a given cation
- As the PAN concentration is increased the more energy it takes to disrupt the crystalline phases of the polymer chains





### Accomplishments and Progress: Demonstration of melt viscosity of PAN-IL composites

- Rheological properties of the PAN-IL composites can determine the "melt spinnability"
- Viscosity curves are a superposition of two different effects
  - Viscosity first decreases when the molecular activity is increased.
  - Viscosity increases when PAN begins to crosslink/cyclizes.
- As the carbon chain length is increased the initial viscosity is also increased.
- As the PAN concentration is increased for a given IL the viscosity also increases.



### Accomplishments and Progress: Demonstration of Melt Spinning PAN Fiber

- Fiber spinning experiments were performed on a melt extruder
- Melt extruder is ideal for small sample sizes
  - 3-5 total grams of material
- Initial testing parameters are:
  - Rotor ≈ 150-160 °C
  - Header ≈ 150-170 °C
  - Rotational speed ≈ 90 RPM
  - Take up speed ≈ 60 ft/min
- 30 wt.% PAN in 5 different IL
  - $\begin{array}{ll} & & [C_3mim]Br, \ [C_4mim]Br, \\ & & [MPCNIm]Br, \ [C_4mim]Cl, \\ & & [MPCNIm]Cl \end{array}$



## Understanding the Stabilization Process for PAN Fibers

- Stabilization of PAN fibers is the most time and cost consuming step for carbon fiber production.
- Stabilization utilizes a heat treatment in an oxidative environment with temperatures ranging from 200°C to 300°C.
- During stabilization, the washed PAN fiber undergoes a structural transformation where the linear polymer transitions into a rigid, thermally stable ladder structure.
  - Washing the PAN fibers removes the residual ionic liquid from the PAN.
  - Washing can remove and recover up to 80 wt.% of the original amount of ionic liquids.
- Stabilization has a strong influence on the mechanical properties of the resultant carbon fibers.



### Accomplishments and Progress: Thermophysical Properties of PAN Fiber Precursors

 Stabilization process results in crosslinking and cyclization reactions that form a laddertype structure.



- Cyclization of PAN macromolecules occurs at amorphous region first, then progresses to the crystalline phase.
  - Overlapping exothermic reactions
- DSC curves for the PAN fiber show a reduction in heat and widening of the distribution of heat emission which reduces oxidative destruction of the fibers
- Carbon yield increases from the melt to over 50 wt.% during stabilization.



### Accomplishments and Progress: Morphology of PAN Fiber Precursor

- Fiber from 30wt.% PAN in [C<sub>4</sub>mim]Br
- Fiber drawing is not only responsible for the chain alignment but for the morphology of the fiber.
- Both surface and sub-surface morphology can affect the tensile strength.
- Surface of fibers are relatively smooth and the cross sections do not reveal any voids or defects.
- Diameters for as spun fiber precursors are comparable to literature values
- Commercial CF has a diameter range of 5-20 μm.

| lonic liquid           | PAN<br>(%) | As Spun<br>Diameters (µm) | Washed Fiber<br>Diameters (µm) |
|------------------------|------------|---------------------------|--------------------------------|
| [C <sub>3</sub> mim]Br | 30         | 56.2 +/- 0.16             | 53.4 ± 7.6                     |
| [C <sub>4</sub> mim]Br | 30         | 56.8 +/- 0.20             | 45.6 ± 7.9                     |
| [C <sub>4</sub> mim]Cl | 30         | 54.7 +/- 0.08             | 45.3 ± 8.7                     |
| [MPCNIm]Br             | 30         | 59.6 +/- 0.25             | 47.9 ± 14.1                    |
| [MPCNIm]Cl             | 30         | 53.4 +/- 0.17             | 48.6 ± 10.4                    |



# Scale-up of the IL production Initial cost assessment

CĪ



- ILs as plasticizers will still dominate the global IL market<sup>1</sup>
  - Key driver: low production cost
- Statistical mixtures of best performing IL(s) advantages:<sup>2</sup>



- Prepared *in situ* from aqueous, readily available, cheap raw materials
- Increase of nitrile functionality sites, which could enhance the plasticization effect
- Potential environmental benefit (reducing the use of VOCs)
- Cost advantage: \$3.5/kg / \$1.62/lb (for the IL statistical mixture shown here)

| IL statistical mixture<br>synthesis | Raw material                             | Cost per metric<br>ton | Cost per<br>kg |
|-------------------------------------|------------------------------------------|------------------------|----------------|
| One pot synthesis                   | Formaldehyde (37% aqueous solution)      | \$400 (Alibaba)        | \$0.251        |
|                                     | 2-chloroethylamine                       | \$450 (Alibaba)        | \$0.271        |
|                                     | Methylamine (40% aqueous solution)       | \$1,935 (molbase)      | \$1.166        |
|                                     | Hydrochloric acid (37% aqueous solution) | \$88 (ICIS)            | \$0.535        |
|                                     | Glyoxal (40% aqueous solution)           | \$1,000 (Alibaba)      | \$1.122        |
| Purification (optional)             | Ethyl Acetate                            | \$978 (molbase)        | \$1.210        |
|                                     |                                          |                        |                |
| Nitrile<br>functionalization        | Sodium cyanide                           | \$2,450<br>(Kemcore)   | \$0.171        |
|                                     |                                          |                        | $\frown$       |
| Total                               |                                          |                        | \$3.516        |

 "Technology Advancement in Ionic Liquids", Frost and Sullivan February 2016.
 Rogers, R. D.; Daly, D. T.; Gurau, G. Methods for Dissolving Polymers using Mixtures of Different Ionic Liquids and Composition Comprising the Mixtures PCT Int. Appl. (2011), WO 2011056924 A2 20110512, US 2019/0040209 A1.



### **Responses to Previous Year Reviewers' Comments**

This project was not reviewed last year.



# **Collaboration and Coordination**

#### **Project Team**

#### Dr. Sheng Dai

Oak Ridge National Laboratory Ionic liquids, carbon materials, and their energy-related applications, responsible for the overall project.

#### Dr. Huimin Luo

Oak Ridge National Laboratory Responsible for synthesis of lonic liquids and prepare of PAN melts

#### Dr. Halie Martin

University of Tennessee-Knoxville Postdoctoral Research Associate responsible for polymer characterization and melt spinning

#### **Dr. Richard T. Mayes**

Oak Ridge National Laboratory

Carbon materials and their energy-related applications

#### Dr. Amit Naskar

Oak Ridge National Laboratory

Carbon materials and their energy-related applications

#### Dr. Gabriela Gurau

525 Solutions, Inc.-subcontract

responsible for technoeconomic analysis and scale-up















# **Remaining Challenges and Barriers**

- Investigation how the molecular structures of ILs dictate plasticizing interactions with PAN.
  - Ionic liquids with higher nitrile component lead to increased plasticizing interactions with PAN
    - New targeted anions including (C(CN)<sub>3</sub><sup>-</sup>)
- Study how the chemical interactions of ILs with PAN can be used to control the cyclization degree in unique ladder structures
  - Demonstrate and understand the mechanical properties of as-spun fibers and fibers washed with water.
- Integrate the information gained from the above tasks to develop IL-assisted melt spinning systems.
  - Increase in the PAN concentration for melt spinning will lower the cost and increase mechanical properties



# **Proposed Future Work**

- Remainder of FY19
  - Demonstrate tensile properties of the PAN fibers (ORNL)
  - Investigate alternate sources of PAN and synthesize new ionic liquids (ORNL)
  - Perform technoeconomic analysis of IL production to identify synthetic inefficiencies and cost drivers (525 Solutions)
- Into FY20
  - Maintain melt viscosity for at least 10 minutes during spinning trials (ORNL)
  - Demonstration of filament diameter of ~20 micrometer after carbonization (ORNL)
  - Perform technoeconomic analysis of scale-up (525 Solutions)
  - Scale-up IL to >1 kg production for IL to realize anticipated decreased cost (ORNL)
- Commercialization: Highly engaged with potential licensees; high likelihood of technology transfer because of significant cost reduction benefits and equipment compatibility.

Any proposed future work is subject to change based on funding levels



# **Technology Transfer Activities**

- The patent "Melt Spinning Process of PAN Fibers Based on Task-Specific Ionic Liquids" in preparation.
- Because significant cost reduction benefits and equipment compatibility of this project, potential licensees are highly engaged which may result in likelihood of technology transfer.



# Summary: Progress and Accomplishments

- The melting temperature of PAN has been demonstrated to be suppressed by over 100 °C by the addition of ionic liquids.
  - Ionic liquids containing chloride anions had a greater effect on the decrease in melting temperatures.
  - Lower production temperatures decreases cost of carbon fiber production.
- Demonstrated the ability to successfully melt spin uniform and homogeneous PAN fibers.
  - Utilizing benchtop melt extruders allows us to determine the processability before scaling up.
  - Surface of fibers are smooth and without defects.
- Preliminary experiments show that the PAN fibers can be stabilized at lower temperatures with carbon yields > 50 %.



Angew. Chem. Int. Ed. **2014**, 53, 5262 – 5298



#### **Acknowledgements**

U.S. DOE Office of Energy Efficiency and Renewable Energy (EERE) (Program Manager: Bahman Habibzadeh)

