Catalyst layer design, manufacturing and in-line quality control

PI: Radenka Maric University of Connecticut, Storrs, CT, 06269 Co-PIs: Katherine Ayers, Paul Yelvington, Haoran Yu April 29, 2019 Award: DE-EE0008427 Project ID: TA027

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Project Start Date: 10/1/18 Project End Date: 10/1/20

Budget

DOE funding released: 12/14/18 Total project budget: \$2.5M DOE funding: \$2M UConn cost share: \$500K FY18 budget received: \$1,084,318 FY19 budget planned: \$915,682

Barriers

Hydrogen Generation by Water Electrolysis

- F. Capital cost
- G. System efficiency and electricity cost
- M. Manufacturing

Partners

- Proton OnSite:
 - Dr. Katherine Ayers
- Mainstream Engineering
 - Dr. Paul Yelvington

Relevance

Overall objectives of the program:

- Scale-up CCMs of 680 cm² with 10% the catalyst loading of commercial MEAs.
- Electrolyzer stability of >1000 hours at 1.8 A/cm², 80 °C and 400 psi differential pressure.
- Material cost reduction: Catalyst materials: 85% (reduce catalyst loading by 90%)
 Membrane: 50% (reduce thickness and improve sealing configuration)
- Energy cost reduction: From \$13.22 per MEA (Proton OnSite current) to \$2.42 per MEA (projected RSDT projected) for 680 cm² MEA.

For the current period (Jan. – Mar. 2019), the objectives are:

- Development of a membrane coating to decrease hydrogen permeation.
- Demonstration of half MEA performance within 50 mV of baseline commercial electrodes at 1.8 A/cm², 2.1V.
- Integration of RSDT electrodes into a single MEA.

Barriers	Impacts
F. Capital cost	Cost reduction with RSDT process: 10X catalyst loading reduction.
G. System efficiency and electricity cost	Development of high-performance electrolyzer MEA. Reduce electric power consumption and improve the cell efficiency.
M. Manufacturing	Scale-up manufacturing at 680 cm ² cell stack level coupled with in-line quality control. Achieve stability of >1000 hours at 1.8 A/cm ² , 80 °C and 400 psi differential pressure.

Approach

Technical approach:

- Finalize MEA fabrication procedure to re-establish the MEA performance in the 2016 project (DE-SC0009213).
- Reduce hydrogen crossover with the design of recombination layer.
- Examine MEA homogeneity with fixed-angle reflectance.
- Evaluate catalyst activity with RDE methods.
- Evaluate MEA performance and stability at 1.8 A cm⁻², 80 °C, and 400 psi differential pressure.

Re-establish the MEA baseline performance

Performance of RSDT cathode (half CCM): cathode

Cathode (RSDT): Pt/Vulcan XC-72R, 0.3 mg_{Pt}/cm², I/C ratio 0.15; Anode (commercial), Ir loading, 3 mg/cm²; Membrane: N117, 50 °C, 400 psi differential pressure.

The performance of the half CCM produced by RSDT is 96 mV better than the baseline with the dry MEA build condition at 1.8 A/cm²,143 mV better than the target 2.1 V.

Re-establish the MEA baseline performance

Performance of RSDT full CCM

Cathode: Pt/Vulcan XC-72R, 0.3 mg/cm², I/C ratio 0.15: Anode IrOx/Nafion, Ir loading, 0.08 mg/cm²; Membrane: N117, 50 °C, 400 psi differential pressure.

The performance of the full CCM produced by RSDT is 49 mV better than the baseline with the same cell build condition at 1.8 A/cm²,110 mV better than the target 2.1 V.

Recombination layer development

The average Pt particle size is 1.5-2 nm. Estimated Pt coverage on the membrane is 2%.

Recombination layer development

Cathode: Proton GDE, 3±0.3 mg_{Pt}/cm^{2;} Anode Proton GDE, 3±0.3 mg_{Ir}/cm²; Membrane: N117, 50 °C, 400 psi differential pressure.

- In the Initial test, no significant difference in H₂ crossover was observed between membrane with and without recombination layer (RL).
- Solution path: (1) Increase the Pt coverage.

(2) Increase the thickness of Nafion[®] coating.

Initial tests for quality control: Reflectance measurements at 45° angle illumination

Pt/C cathode

IrOx/Nafion anode

5.95 cm

- Samples are from the 2016 DOE program (DE-SC0009213) for initial evaluation.
- One of the Pt/C samples had warping in the membrane and pooling or bulging in the catalyst. The other Pt/C sample is homogeneous.
- IrOx sample was warping significantly. Dimples could be seen that could be due to catalyst loading or membrane
- Sample would need to be flattened for better analysis.

Collaboration & Coordination

Part	ner	Project Roles
Unive	rsity of Connecticut	Project lead, MEA fabrication, materials analysis, management and coordination
Proto	n OnSite	MEA evaluation and MEA device design
Mains	stream Engineering	In-line quality control for MEA fabrication, device design for spectroscopic analysis

Remaining Challenges and Barriers

Challenges:

- Demonstrate stability performance >300 hours for full RSDT CCM at 86 cm² active area.
- Reduce hydrogen crossover with recombination layer.
- Reduce membrane warping for reflectance measurement and in the fabrication process.

Planned resolution:

- Improve the homogeneity of catalyst layers morphology.
- Revise cell planform to improve margin during assembly.
- Increase platinum coverage for the recombination layer.

LCONN

Proposed Future Work

Remainder of FY2019

Milestones and go/no-go decision

Milestone Description	Due Date	Complete
Verify hydrogen crossover reduction with RSDT-derived recombination layer	4/19 (M7)	25%
Verify full RSDT CCM at 86 cm ² and verify catalyst activity with RDE	6/19 (M9)	50%
Machine vision components assembled, and fixed-angle reflectance images collected for UCONN cathode and anode calibration samples.	6/19 (M9)	10%
Laser system installed and verified with Si standard	9/19 (M12)	5%
Full RSDT Cell with 86 cm ² is stable at 1.8 A cm ⁻² , 80 °C, 400 psi hydrogen pressure for 1000 hours. (GO/NO-GO DECISION)	12/19 (M15)	0%
Catalyst loading measurement sensitivity of 0.03 mg _{Pt} /cm ² and local defect resolution of 250 μ m at ±50% of nominal catalyst loading.	12/19 (M15)	0%

Technology Transfer Activities

Scale-up fabrication of MEA with in-line quality control

 If the proposed technology can meet all the cost and performance targets of this program, Proton OnSite would establish a commercialization for electrolyzers using the RSDT process.

Summary

Objective: Demonstrate a fully fabricated membrane electrode assembly using the reactive spray deposition technology (RSDT) method to meet the cost reduction targets of materials.

For the current period (Jan. – Mar. 2019):

- Development of a membrane coating to decrease hydrogen permeation.
- Demonstration of half MEA performance within 50 mV of baseline commercial electrodes at 1.8 A cm⁻², 2.1V.
- Integration of RSDT electrodes into a single MEA.

Approach:

- Finalize MEA fabrication procedure for RSDT.
- Reduce hydrogen crossover with the design of the recombination layer.
- Examine MEA homogeneity with fixed-angle reflectance.
- Evaluate catalyst activity and MEA performance at 1.8 A cm⁻², 50 °C, and 400 psi differential pressure.

Accomplishments: Successfully re-established MEA fabrication procedure and MEA performance. Demonstrated half CCM and full CCM produced by RSDT where MEA performance is >50 mV better than the commercial baseline at 1.8 A cm⁻² with 10X catalyst loading reduction.

