Novel Structured Metal Bipolar Plates for Low Cost Manufacturing

Conghua Wang TreadStone Technologies Inc. Princeton, NJ 08540

David A. Cullen Oak Ridge National Laboratory Oak Ridge, TN 37830

05/29/2020

Project ID # FC105

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline and Budget

- Project Start Date: 03/01/2019
- Project End Date: 12/31/2020
- FY19 total DOE Funding: \$407,162
- FY20 Planned DOE Funding: \$0

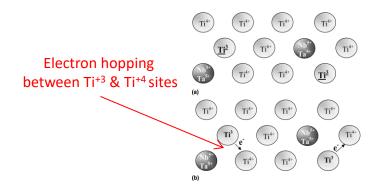
Barriers

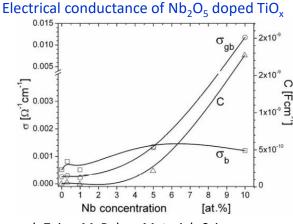
- Bipolar plate fabrication cost: (\$3/kW)
- Electrical contact resistance: (<5 mΩ.cm²)
- Corrosion resistance: (< 1 µA/cm²)

Partners

- Oak Ridge National Laboratory
 - PI: David Cullen
- TreadStone Technologies Inc.
 - PI: Conghua Wang

Relevance


- Develop lower cost metal bipolar plates to meet performance target and 2020 cost target (<\$3/kW)
 - Develop large scale manufacturing process for the doped titanium oxide coating technology demonstrated in previous SBIR project.
 - Investigate the relationship between processing conditions and doped titanium oxide properties for production quality control system development.


Key Technical Targets

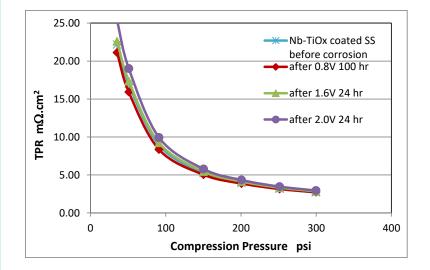
Characteristic	Unit	2011 Status	2017 Targets	2020 Targets
Cost	\$ /kW	5-10	3	3
Corrosion	μ <mark>A/cm</mark> ²	<1	<1	<1
Resistivity	$\Omega.cm^2$	<0.03	<0.02	<0.01

Approach: Coating Material for SS Plates Semiconductive Doped TiO_x

Doping TiO_2 with +5 valence elements enforce the formation of Ti^{+3} in TiO_2 lattice structure, and result in the higher electronic conductivities.

A. Trenczek-Zajac, M. Rekas, Materials Science-Poland, Vol. 24, No. 1, 2006

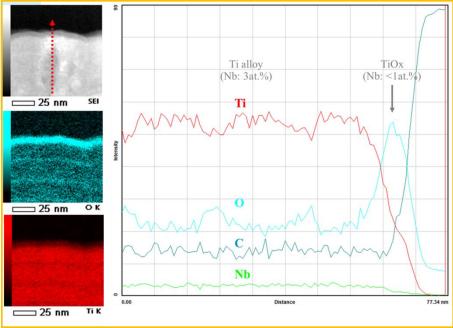
Challenges to use doped TiO_x coating:


- 1. Doped TiO_x is semi-conductive. The electrical conductivity is not high enough.
- The weak bonding of doped TiO_x to metal substrate surface.

TreadStone's approach:

- Coat stainless steel substrate with Ti-Nb or Ti-Ta alloy. Then, grow the doped TiO_x surface layer on the Ti alloy coating layer.
- 1. The doped TiO_{x} on Ti alloy surface is thin and reliable.
- 2. Ti alloy coating has excellent adhesion on metal substrate (stainless steel or aluminum).

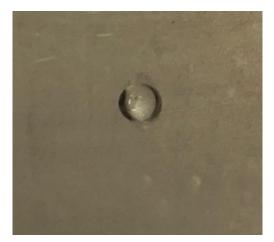
from previous project


- Low contact resistance and superior corrosion resistance have been demonstrated using the doped TiO_x coating on SS substrate for PEM fuel cell applications.
- Challenges:
 - Processing technology must be optimized to obtain the desired structure of surface oxide layer.
 - Segregation of Nb or Ta alloy element from the coating surface leads to the pure Ti surface oxide layer of the sputtering coated surface.
 - Need to determine the optimized coating properties.

The objective of this project is to develop technical solutions to overcome these challenges.

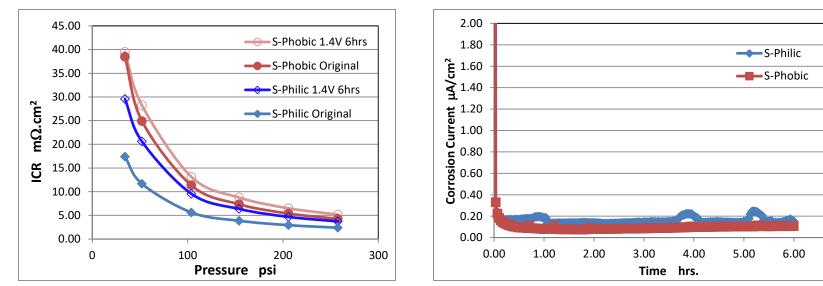
Coating Surface Composition Control

- Sputtering using Ti-Nb alloy target only obtained Ti in the coating surface layer.
- By adjusting the Ti alloy target composition, the Nb segregation in the coating surface layer can be reduced, as verified using STEM and EDAX analysis.
- The Nb in the surface layer of the Ti alloy coating will lead to the formation of Nbdoped TiOx surface layer.


Achievements and Progress Coating Surface Hydrophilicity

- The TiO_x coating can be tailored to super-hydrophilic or super-hydrophobic properties.
- The "super" surface property can help water management to avoid flooding or overheating in stacks, with proper flow field design.
- The "super" surface property is stable after corrosion tests for 100hrs @ 0.8
 V_{NHE} and 6 hrs @ 1.4 V_{NHE}.
- The "super" surface property is stable after several months shelve storage tests.

Water droplet on superhydrophilic TiO_x coated SS plate.



Water droplet on superhydrophobic TiO_{x} coated SS plate.

ICR and corrosion resistance of TiOx Coated SS

ICR of super-hydrophilic and superhydrophobic TiOx coated SS before and after 6 hrs. corrosion tests at $1.4 V_{NHE}$ in pH3 H₂SO₄ + 0.1ppm HF solution at 80°C. Corrosion current of superhydrophilic and super-hydrophobic TiOx coated SS at 0.8 V_{NHE} before potentiostatic tests in pH3 H₂SO₄ + 0.1ppm HF solution at 80°C.

7.00

Responses to Previous Year Reviewers' Comments

• This project was not reviewed last year.

Collaboration and Coordination

- Oak Ridge National Laboratory (Prime)
 - Federal Laboratory
 - Funded within the DOE Hydrogen and Fuel Cells Program
 - Electron microscopy characterization and annealing by laser interferometry
- TreadStone Technologies Inc. (sub)
 - Industry
 - Funded within the DOE Hydrogen and Fuel Cells Program
 - Coating technology development and evaluation

Remaining Challenges and Barriers

 Lack of scientific understanding of the electrical conductance and the performance degradation mechanism of the TiOx coating. Fundamental investigation is needed to provide solutions to:

1. Guide production quality control, for high production yield.

2. Accelerate technology transfer and market acceptance, without extensive durability tests.

• Lack of the performance demonstration in full size fuel cell stacks.

Technology Transfer Activities

- Filed one provisional patent application in Feb. 2020.
- In discussion with two global coating service companies for technology licensing and market development.

Summary

• <u>Objective:</u>

- Develop low cost fabrication process of the doped TiO_x coating for PEM fuel cell applications.
- Investigate the relationship of the properties of the doped TiO_x surface layer with processing condition and its durability in PEM fuel cell operation environment.
- *Relevance:* Reducing the metal bipolar plate cost to meet FY20 requirements.
- **Approach:** Using doped TiO_x coating on metal plates surface for fuel cell applications.
- <u>Accomplishment:</u>
 - Identified coating process to control the coating surface composition.
 - Developed a low cost manufacture method to achieve the desired properties.

• Future Work:

- Scientific understanding of the electron conductance and degradation mechanism of the TiO_x coating in fuel cell operation conditions.
- Demonstrate the long term durability in fuel cell stack operation conditions.
- Explore the application of the TiO_x coating in other applications, such as electrolyzers and batteries.

Any proposed future work is subject to change based on funding levels