

2020 Hydrogen and Fuel Cell Annual Merit Review Meeting

Ionomer Dispersion Impact on Advanced Fuel Cell and Electrolyzer Performance and Durability

PI: Hui Xu

Giner Inc.

Newton, MA

May 20, 2020

Project ID FC117

This presentation does not contain any proprietary, confidential, or otherwise restricted information

2

Project Overview

Timeline

- Project Start Date: 8/27/2018
- Project End Date: 2/26/2021
 Budget
- Total Project Value
 - Phase IIB: \$1 Million
 - Spent: \$734 K

Barriers Addressed

• PEM fuel cell and electrolyzer performance and durability

Contributors

- Giner: Natalie Macauley, Shirley Zhong, Magali Spinetta, and Fan Yang
- LANL: Dr. Yu-Seung Kim (sub.)
- NREL: Scott Mauger (sub.)
- UConn: Jasna Jankovic (collaborator)

Technical Targets

- Elucidate how ionomer dispersions impact electrode structures and performance
- Create fuel cell MEAs that are mechanically and chemically stable
- Establish catalyst ink property- electrode structure-MEA performance correlation
- Develop processable and scalable MEA fabrication platforms

Project Nature

• DOE Technology Transfer Opportunity Project (SBIR-TTO)

Relevance: Ionomer Dispersion Technology

Conventional lonomer Dispersion

Dupont European Patent 0066369

Water based multiple solvent system

Large

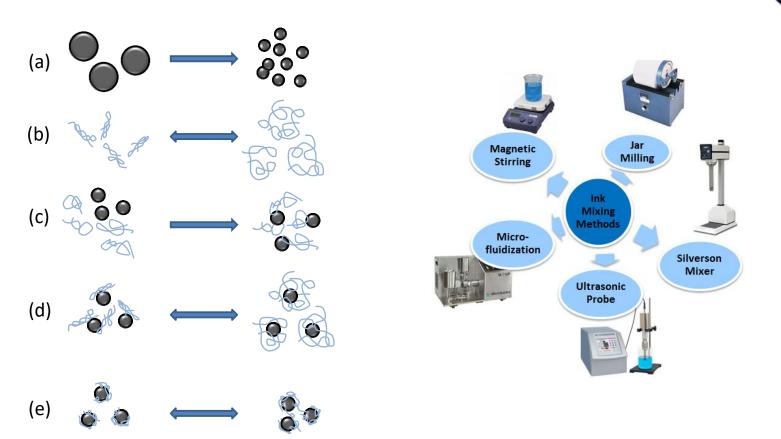
swollen particle

> 200 nm

- Expensive processing: requires high temperature (> 200°C) & pressure (> 1000 psi)
- Large and non-uniform particle suspension: particle size (hydrodynamic radius: 200 – 400 nm)
- Produces brittle membrane: toughness
 ~ 0.001 MPa
- Produces less stable electrode: cell voltage loss after durability test: 40-90 mV



- Small and uniform particle suspension: particle size (2.2 x 15 nm cylinder)
- Produces tough membrane: toughness 10 MPa (> 4 orders of magnitude difference!!)


ambient pressure

 Produces stable electrode: cell voltage loss after durability test: 0 mV

Technical Approaches

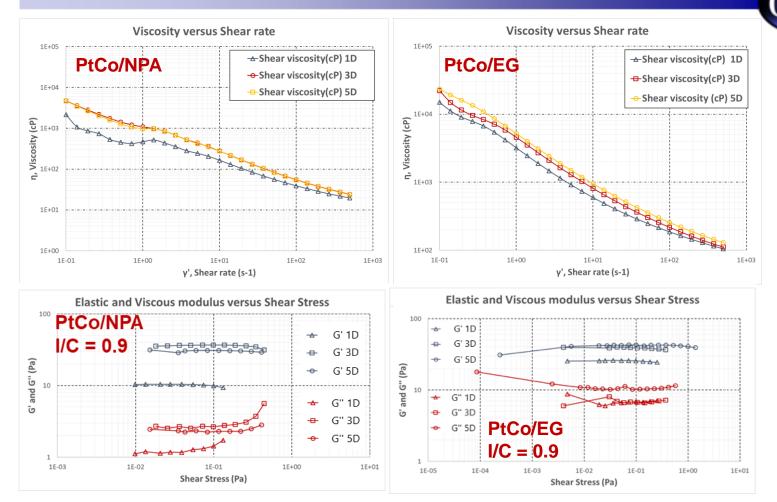
Background: Pt/C and Ionomer Interaction

- (a) Breakdown of core catalyst agglomeration
- (b) Ionomer re-conformation in various solvent blend
- (c) Ionomer adsorption onto catalyst particle surface
- (d) Ionomer re-conformation on particle surface
- (e) Formation and breaking-up of flocculation

Phase IIB Project

- □ Correlate catalyst ink properties with electrode structure and fuel cell and electrolyzer performance
- Identify MEA improvement pathways toward rollto-roll manufacturing methods and full MEA commercialization
 - Ink characterization: Rheology, Zeta potential, Particle size analysis
 - MEA Performance and Durability
 - Microstructure characterization: SEM & TEM
 - Commercialization via Roll to Roll production
 - TSA with NREL
 - Fuel cell GDE
 - Electrolyzer decal

Fuel Cell and Electrolyzer Performance



Microscopy: Electrode Structures

Rheometer: Catalyst

Inks

Accomplishment: Rheology on Mixing PtCo Ink

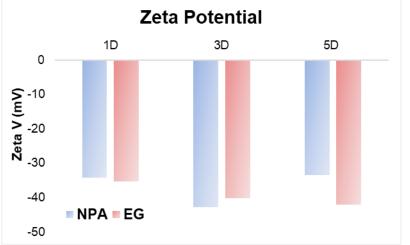
Mixing time determined by stable viscosity 3 days for NPA and 5 days for EG

- Stable viscosity and highest elastic modulus
- Elastic dominant inks

G' – Elastic modulus **G''** – Viscous modulus

NPA 1D

-NPA 3D -EG 1D


-EG 3D

EG 5D

5

6

Mixing PtCo in NPA vs EG

Zeta Potential

Particle size (µm)

4

3

Laser Diffraction Particle Size

- Gradually decreases with mixing time for EG ink
- NPA ink has lowest value after 3 days

Laser Diffraction Analysis:

- Carbon agglomerate size decreases with mixing time for EG ink
- Dx(50) NPA: 0.789 μm to 0.158 μm after 1 and 3 days
- Dx(50) EG: 0.369 μm, 0.178μm and 0.063 μm after 1,3 and 5 days

20

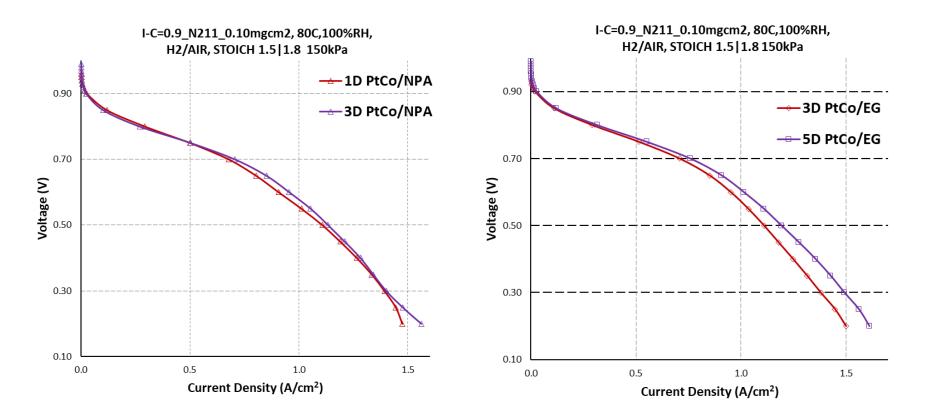
16

12

8

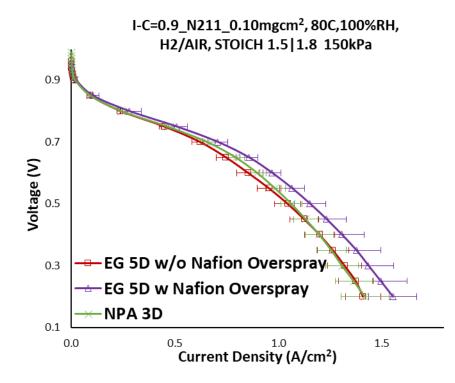
4

0


0

1

2

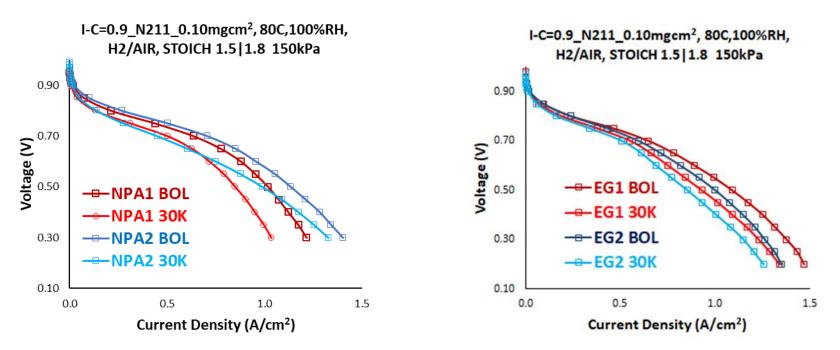

% Number

Accomplishment: NPA vs EG Performance

NPA: 3 day mixing shows slightly better performance **EG:** 5 day mixing shows better performance

Decal Performance

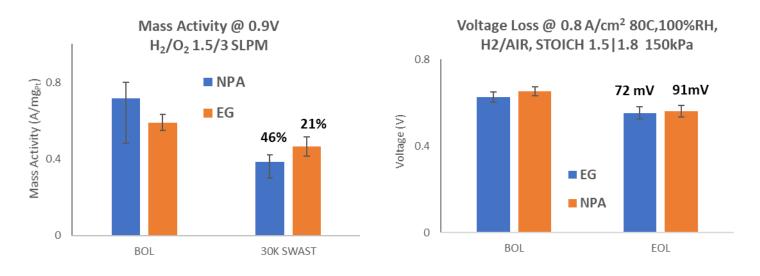
BOL Performance for Stoichiometric Flows


- EG MEAs with Nafion overspray performs better than NPA
- EG MEAs without overspray performs similar on average to NPA MEAs
- EG MEA has lower initial sheet resistance than NPA MEA

Durability of PtCo in EG vs NPA 30K SW AST

30,000 cycle 0.6-0.95 V Square Wave Accelerated Stress Test (30K SW AST)

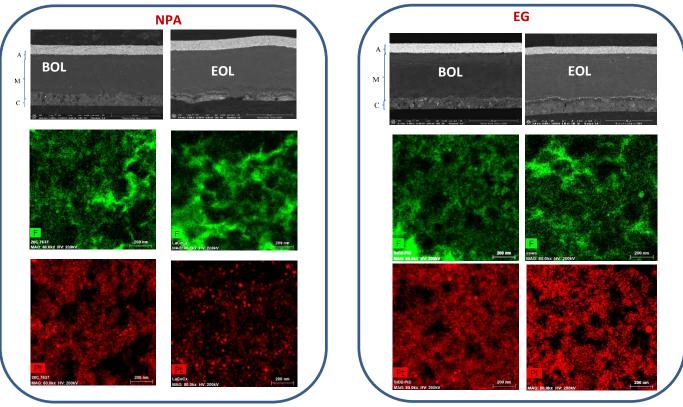
NPA



□ NPA MEAs degrade faster than EG MEAs <u>without</u> overspray

- NPA MEAs degrade in both regions
- EG MEAs degrade more in high current density region

Durability of PtCo in EG vs NPA 30K SW AST


30,000 cycle 0.6-0.95 V Square Wave Accelerated Stress Test (30K SW AST)

- EG with Nafion overspray lost 40% of performance after 30k SWAST similar to NPA durability – testing methanol based Nafion overspray
- EG without Nafion overspray meets DOE mass activity durability target of a loss < 40%</p>
- Sheet resistance of the NPA cathode increases from 0.135 Ω.cm² to 0.162 Ω.cm²
- G cathode has lower sheet resistance than NPA cathode: increases from 0.088 $\Omega.cm^2$ to 0.096 $\Omega.cm^2$

Accomplishment: Microstructural Analysis

- □ No thinning or structural damage observed in the EG catalyst layer
- □ NPA catalyst layer thins from 7.02 \pm 2.52 µm to 5.74 \pm 1.39 µm, i.e. 18% thinner
- □ Ionomer and platinum aggregation seen in both MEAs

Microstructural Analysis

	BOL Primary porosity	EOL Primary porosity	BOL Secondary porosity			EOL PtCo Particle size (nm)	BOL Cobalt	EOL Cobalt
PtCo/NPA	39%	39%	46%	44%	6.25±1.86	9.04±3.93	0.0326	0.0151
PtCo/EG, without spray	55%	29%	24%	62%	3.42±1.10	5.58±1.83	0.0187	0.0129
PtCo/EG, with spray	54%	24%	30%	67%	3.30±1.09	5.50±1.67	0.0252	0.0110

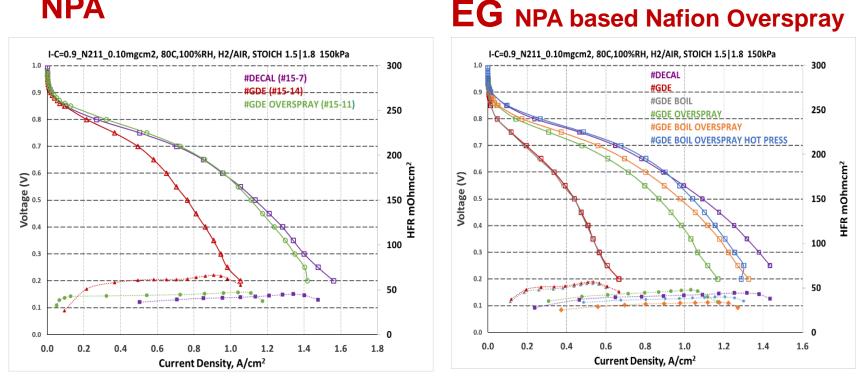
□ EG cathode's lower secondary porosity may lead to higher mass transport losses

- □ Higher loss in primary porosity for EG cathode after durability test
- Significant porosity changes in EG cathodes vs no change in NPA cathode
- Similar particle size growth in all cathodes after durability test
- Lowest Cobalt loss of 30% in EG MEA without Nafion Overspray vs 53% for NPA MEA and 56% for EG MEA with Nafion Overspray

Accomplishment: Coating GDL with EG Ink

- Shifting from CCM to GDE for commercialization
- Tested on various GDL: 29 BC SGL, 22BB SGL and Freudenberg H23C8
- Variability in GDL hydrophobicity
- Variability in ionomer batch
- Ways to improve GDL coating
 - Mix NPA:EG to improve coating poor performance
 - Air plasma GDL surface modification
 - Heat ink to 60 °C
 - Treat GDL with NPA

Coating Approaches on GDL H23C8


	NO treatment	GDL Plasma treatment	GDL NPA treatment	Heated ink (60 °C)	Cooled ink from 60 °C to 25 °C (ambient)
Comment	H23C8 is not treated and EG ink is coated	Plasma treatment is applied prior to coating	NPA deposit on the GDL, drying for a few minutes at 60°C prior to coating	Ink is heated at 60°C during a few minutes and then coatde, H23C8 is not treated	Ink is heated to 60°C and then cooled down to 25°C prior to coating, H23C8 is not treated
Result	X Failed (no coating possible)	√ worked	√ worked	√ worked	√ worked
Pictures	Contractional and	Action Property Co. B		HOTTODINAL BORO	Marine Contraction of the second seco

CCM vs GDE Performance

0.1 mg/cm² PtCo, 29 BC SGL, 25 cm²

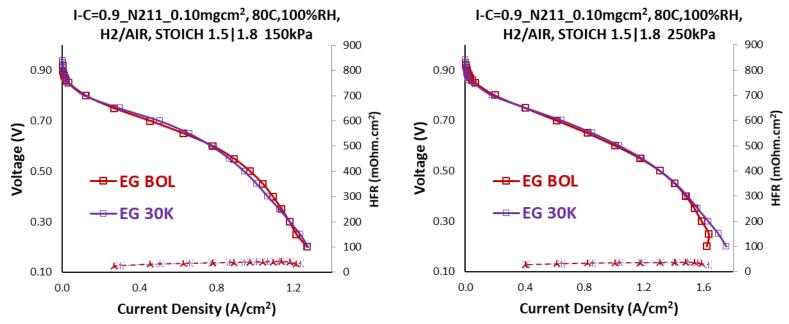
NPA

GDE proof of concept necessary for R2R production:

- NPA GDE performs similar to decal with just Nafion overspray
- EG GDE requires multi step process to match decal performance
 - Boiling + Nation overspray + Hot pressing

R2R: GDE Durability

0.1 mg/cm² PtCo, 29 BC SGL, 25 cm²

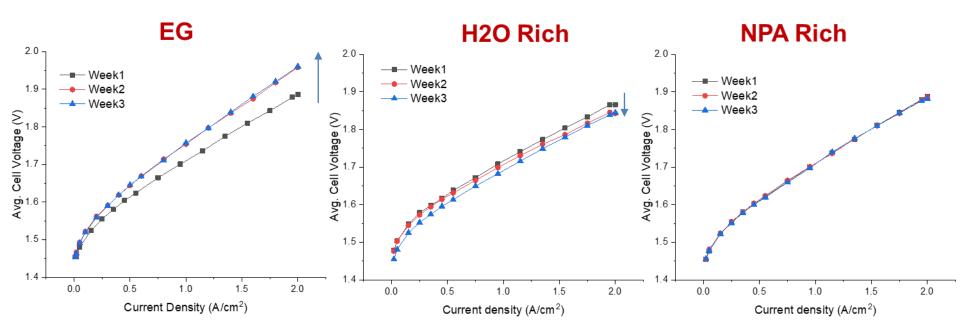

NPA EG NPA based Nafion Overspray I-C=0.9_N211_0.10mgcm2, 80C,100%RH, I-C=0.9_N211_0.1 mg/cm², 80C, 100%RH, H2/AIR, STOICH 1.5 | 1.8 150kPa H2/Air, 1.5 1.8 Stoich, 150kPa, 29 BC SGL 900 1.10 900 NPA GDE BOL 0.90 800 800 NPA GDE 30K EG GDE BOL 0.90 700 700 EG GDE 30K 0.70 600 600 **Voltage (V)** HFR (mOhm.cm²) Voltage (V) 500 500 400 400 300 HFR (mOhm.cm2) 0.50 400 0.50 300 0.30 200 200 0.30 100 100 XXeegeeeXteegeeee 0.10 0 0.10 0 0.5 0.0 1.0 1.5 0.0 0.4 0.8 1.2 1.6 Current Density (A/cm²) Current Density (A/cm²)

- GDE durability is different from decals: lower overall performance losses
- NPA MEA has higher losses at 0.8 V
- **Ο** NPA GDE has higher sheet resistance than EG GDE, 0.26 Ω .cm² vs 0.21 Ω .cm²

R2R: GDE Durability

0.1 mg/cm² PtCo, H23C8, 25 cm²

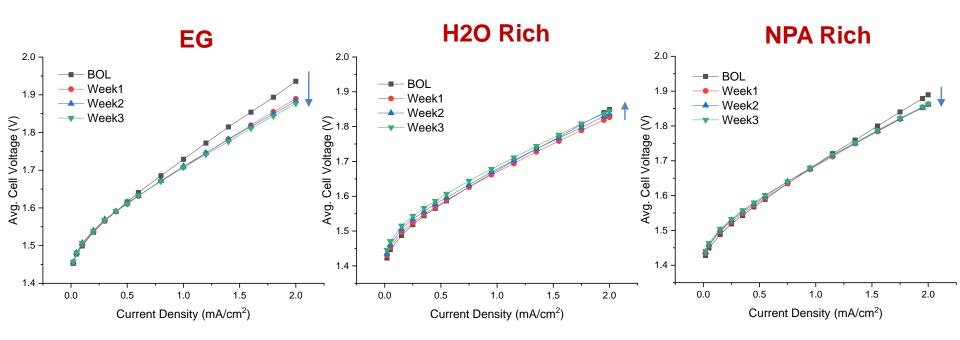
EG <u>Methanol</u> based Nafion Overspray



Freudenberg H23C8 with plasma treatment

- GDE durability is better than with NPA based Nafion overspray
- Almost no performance degradation at all
- Hot pressed half CCM and then mild hot pressing of GDE to half CCM

Accomplishment: Electrolyzer Performance


1 mg/cm² Ir Anode, 0.2 mg/cm² Pt/XC72 Cathode, 50cm²

- 3 weeks at 3 A/cm² caused performance changes similar to conditioning
- No change was seen for the NPA rich anode
- Water rich anode improved; EG anode performance decreased

Electrolyzer Performance

1 mg/cm² IrOx Anode, 0.2 mg/cm² Pt/XC72 Cathode, 50cm²

- 3 weeks at 3 A/cm² caused performance changes similar to conditioning
- NPA rich anode shows improvement
- Water rich anode improved but then decayed
- EG anode performance improves

Ir vs. IrOx Comparison

1 mg/cm² IrOx Anode, 0.2 mg/cm² Pt/XC72 Cathode, 50cm²

- Initial performance of IrOx samples are better than Ir black
- Performance: H_2O rich > NPA rich > EG
- For durability: move to lower loading of 0.1 mg/cm² Ir

R2R Plan with NREL

GINER

- Address EG's high boiling point
- Identify R2R parameters for EG ink
- NREL's experience with coating battery anodes made with NMP will help guide EG ink R2R fabrication process
 - Similar boiling point to EG
 - Use of 2 ovens: Prebake + Bake

Ink Formulation (Giner): send premixed ink and substrate material to NREL

Small scale trials (NREL)

- rod coating, SEM

Roll-to-Roll Coating (NREL)

- Corona treatment of GDL
- Tuning of coating speed and flow rate
- Variations in ink formulation & drying process
- Inspection of coating quality optical or SEM

Send 1 m^2 coated GDE from NREL to Giner for in-situ testing

Collaboration and Coordination

- **Giner (Lead):** Hui Xu, Natalia Macauley, Magali Spinetta, and Shirley Zhong. Oversee the entire project management, catalyst ink rheology, electrode design and scale-up, and MEA commercialization
- LANL (Subcontractor): Yu Seung Kim. Provide ionomer dispersions in EG and Methanol, and SANS measurements of Nafion
- NREL (Subcontractor): Scott Mauger. Optimize R2R conditions for GDE fabrication
- UConn (Collaborator): Jasna Jankovic. Perform microstructure analysis with SEM and TEM: ionomer, Pt, Co distributions and particle size changes from BOL to EOL

Conclusions

- Rheology, zeta potential and laser diffraction was used to characterize catalyst inks for ink quality
- Average performance of EG MEA without Nafion overspray is similar to NPA baseline MEA performance
- □ EG MEA with Nafion overspray outperforms NPA Baseline MEA
- Durability of EG MEA without Nafion overspray is better than that of NPA
- Better MEA durability of EG GDE compared to NPA GDE seen at low voltages
- Methanol based Nafion overspray results in highly stable EG MEA
- Catalyst microstructure agrees with observed performance in PtCo catalysts with NPA vs EG solvents
- NPA based electrolyzer anodes perform better than EG based anode
 - Non uniform microstructure of EG based Ir anode in good agreement with observed performance

Future Work

Fuel Cell

- Establish performance and durability of EG vs NPA GDEs on H23C8
- Finalize TSA with NREL and send EG ink for initial coating tests
- Local oxygen resistance of EG vs NPA GDEs
- Evaluate microstructure difference between GDEs in NPA vs EG solvent

Electrolyzer

- Perform electrolyzer durability test on 0.1 mg/cm² Ir NPA rich and EG MEA to evaluate EG's durability advantage
 - 1.45 2.0 V square wave with 30s dwell time
- Microstructure analysis on degradation process of low loaded anodes
- **G** Follow iridium dissolution during AST using ion chromatography

- Financial support from DOE SBIR/STTR Program under award # DE-SC0012049
- Program Manager- Ms. Donna Ho
- Dr. John Kopasz for project suggestions
- Dr. Yu- Seung Kim at LANL (Subcontractor)
- Dr. Jasna Jankovic at UConn