

Bipolar Membrane Development to Enable Regenerative Fuel Cells

Co-PIs: <u>Todd Deutsch</u>, KC Neyerlin Key contributors: Yingying Chen, Sadia Kabir, Ellis Klein National Renewable Energy Laboratory May 2020

DOE Hydrogen and Fuel Cells Program 2020 Annual Merit Review and Peer Evaluation Meeting

Project ID: fc182

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline and Budget

- Project start date: 01/01/18
- Project end date: 03/31/20
- Total project budget: \$400k
 - Total DOE funds spent*:
 \$400k
- * As of 3/31/20

Barriers

- A Cost
- B Durability
- C Performance

Partners

- Anion ionomer development program at NREL
- MEA fabrication group at NREL
- Fuel cell and electrolysis testing groups at NREL

Relevance

- This project directly addresses DOE FCTO's interest in developing Reversible Fuel Cells (RFCs) From MYRD&D, "Advantages of reversible fuel cell technology include high round-trip efficiency (60–90%), decoupled power and energy capacity, long cycle life, low self-discharge rate, and reliable and stable performance."
- A BPM with an electrospun junction has never been integrated into a fuel cell or water electrolysis MEA, much ٠ less a unitized RFC. These studies represent a completely new field with significant promise to ameliorate some of the key challenges in RFC development, as well as provide significant gains to the BPM understanding.
- **Objectives** ٠
 - Fabrication of a bipolar membrane (BPM) with a dual-fiber electrospun junction that can be employed in a stable, high-performance RFC membrane electrode assembly (MEA).
 - The key technical aspects of the project are focused on fabricating/optimizing electrospun 3D junction for implementation into MEAs for fuel cell, electrolyzer, and RFC devices. Membrane characteristics such as composition, fiber diameter, and the incorporation of catalysts/particulates at the interfacial/junction will be tested first in either individual fuel cell or electrolyzer devices.

Approach

Electrospinning

- Electrostatic voltage (4-50 kV) between a blunt tip needle and grounded substrate
- Charged polymer jet from a mixture of Nafion[®]/perfluorinated AEM (PFAEM) ionomer and/or catalyst in carrier polymer (e.g. PEO)
- Solvent (IPA and water) evaporates from fiber as it travels from tip to substrate, filament also elongates during transit, narrowing diameter
 - Relative humidity in chamber is a critical experimental variable
- 300-500 nm diameter nanofiber threads
- Randomly aligned nanofibers collected as mat of uniform thickness and fiber volume fraction on a membrane
- Unique aspect of our approach: Dual head electrospinning results in 3D interface of interpenetrating cation/anion membrane fibers
- Polymer dispersions electrospun concurrently on programmable, rotating, translating drum
- Substrate attached to drum
 - Glass, membrane, conductive carbon tape, TEM grid, etc.
 - Water dissociation catalysts introduced to polymer dispersions

A high surface area 3D BPM interface should have improved properties over a planar, 2D BPM

Approach – 2D BPM Fabrication

Step 1: Ultrasonic spray of junction material on Nafion

Step 2: Spread AEM layer Squeeze out bubbles Step 3: Hot Pressing

Final BPM structure:

Nafion 25 μm

Sprayed catalyst layer

PFAEM ~ *30* μm

AEM

Approach – 3D BPM Fabrication

Approach – 3D BPM Fabrication

- 83% of Nafion nanofibers (NF) and 56% AEM NF diameters: 100 ~ 150 nm
- AEM NF diameter ranges slightly broader due to occasionally beaded fibers

Approach

FY19/FY20 Milestones

Milestone Name/Description	Criteria	End Date	Туре	
Break down the ensemble BPM resistance into its discrete components and report the resistance contributions due to the PEM, AEM, and interfacial junction	Using AC impedance analysis, determine the individual component resistances.	6/30/2019	Quarterly Progress Measure (Regular)	Complete
RFC unitized cell hardware	Develop hardware that allows operation of an MEA in both fuel cell and electrolyzer mode without having to remove the MEA.	9/30/2019	Quarterly Progress Measure (Regular)	Complete
Evaluate the stability and performance in fuel cell and electrolysis mode at elevated temperature.	Determine the degradation profile of BPM MEAs while operating continuously for 8 hours in fuel cell and electrolysis mode at 80°C.	12/31/2019	Quarterly Progress Measure (Regular)	Complete
Demonstrate >1A/cm ² in both fuel cell and electrolysis mode using BPM RFC.	Measure current densities >1 A/cm ² in both fuel cell and electrolysis mode with a BPM MEA.	3/31/2020	Annual Milestone (Regular)	Partially met

Flow Cell Screening

Example : Nafion + 2 μ g/cm² GO + AEM

HFR: high-frequency resistance LFR: low-frequency Resistance CPE: constant phase element

 $\mathbf{R}_{\mathbf{b}} = \mathbf{R}_{\mathrm{H}_{2}\mathrm{SO}_{4}} + \mathbf{R}_{\mathrm{NaOH}} + \mathbf{R}_{\mathrm{CEL}} + \mathbf{R}_{\mathrm{AEL}}$ $\mathbf{R}_{\mathbf{W}}$: Resistance of water dissociation reaction **CPE**: Electrical double layer (heterogeneity)

Graphene oxide (GO) as water dissociation catalyst helps significantly lower the potential drop across BPM [1] Martínez, Rodrigo J., and James Farrell. "Water splitting activity of oxygen-containing groups in graphene oxide catalyst in bipolar membranes." *Computational and Theoretical Chemistry* 1164 (2019): 112556.

[2] McDonald, Michael B., and Michael S. Freund. "Graphene oxide as a water dissociation catalyst in the bipolar membrane interfacial layer." *ACS applied materials & interfaces* 6.16 (2014): 13790-13797.

Flow Cell Screening

- > Catalytic sites increase
- Junction conductance & Electric field & Water dissociation rate decrease

BPM MEA Electrolysis

- Anode GDE: 0.45 mg/cm² PtIr on 20% PTFE treated Toray carbon paper Cathode GDE: 0.4 mg/cm² Pt/HSC on Sigracet 29BC
- I M H₂SO₄ was fed to Nafion side and 1 M NaOH was fed to AEM side at 10 ml/min
- Room temperature, ~20 °C
- Galvanodynamic scan at 1 mA/cm^{2*s}

Accomplishments and Progress BPM MEA Electrolysis

 NREL fabricated 3D Catalyzed w/ Spray BPM & 2D BPM outperforms commercial BPM in MEA electrolysis test
 Commercial FBM is not designed for MEA testing – uneven surface due to reinforcing fiber causes high contact resistance

- AEM & Cathode GDE was ion-exchanged from I⁻/Cl⁻ to OH⁻
- Cathode GDE: <u>0.8</u> mg/cm² Pt/HSC on 29BC
- Anode GDE: <u>0.4</u> mg/cm² Pt/HSC on 29BC
- \succ H₂/O₂ for anode/cathode flow
- Temperature 60 °C
- Relative humidity ranged from 50% ~ 100%

BPM MEA Fuel Cell

High Pt loadings used:

- Minimize kinetic loss on electrodes
- Focus on BPM junction optimization for fuel cell performance

BPM MEA Fuel Cell

BPM = Nafion + 20 μ g/cm² C + AEM

What does Vulcan carbon do?

- Lower contact resistance
- Higher dielectric constant
- Water reservoir
- Mechanical strength

Optimize the recipe for BPM junction to achieve BPM reversible fuel cell operation: *Carbon + GO + Nafion*

Accomplishments and Progress Same BPM in FC and EC

Accomplishments and Progress: Responses to Previous Year Reviewers' Comments

- Modeling would help with the fundamental understanding of BPM performance and its optimization.
 - The relatively small budget does not permit inclusion of experiment, characterization, and modeling components of this study. We have incorporated finite element modeling of 3D electrospun BPM junctions in another HFTOsupported BPM project on CO₂ reduction.
- The project team needs to measure the round-trip efficiency and cycle life of the most optimized 3D BPMs.
 - From the data presented on slide 18, the round-trip efficiency is 21% at 100 mA/cm² and drops to 12% at 200 mA/cm². The difficulty of finding a common catalyst optimized for both water dissociation and recombination as well as the challenge of removing halide from the electrospun AEM fibers results in a mismatch between the best performing fuel cell and electrolyzer BPMs.

Remaining Challenges

Remaining Challenges:

- The gas diffusion electrode is not optimized for reversible fuel cell operation
 - MPL works for fuel cell, but causes the membrane to dry out in electrolyzer mode
 - Carbon paper is prone to corrosion in electrolyzer mode

Collaboration and Coordination

- NREL's anion ionomer development program
 - Federal lab
 - Within DOE FCTO
 - Provide this project PFAEM polymer, we provide characterization results
- NREL's MEA fabrication, fuel cell and electrolysis characterization groups
 - Federal lab
 - Within DOE FCTO
 - Maintain equipment for MEA fabrication as well as fuel cell and electrolyzer test stands that enable performance evaluation of BPM devices
- This project relies on a great working relationships that leverage materials and capabilities previously developed within NREL's fuel cell and electrolysis group to achieve its objectives

Proposed Future Work

- Optimize the 3D junction (C+GO+N) in electrospun BPM for RFC
- Exchange the AEM layer in electrospun BPM from I⁻ to OH⁻ by in-situ conditioning in electrolyzer
- Test durability and performance under reversible operation in repeated cycles

End of project milestone: 3/31/20

- Demonstrate >1 A/cm² in both fuel cell and electrolysis mode using BPM RFC approach
 - Achieved 1 A/cm² in electrolysis mode but only 550 mA/cm² in fuel cell mode.

Technology Transfer Activities

- We are responding to FOAs that use BPMs for other applications, such as CO₂ electrolyzers and electrodialysis.
- We are in discussions with companies with a potential for funding 3D electrospun BPMs for water and energy applications

Summary

- We are able to make electrospun BPMs with 3D junction showing high performance and high durability in electrolysis mode
- We were not able to condition BPMs (exchanging to H⁺/OH⁻ ionic form) due to the fast corrosion of carbon paper in electrolysis mode. This prevented us from testing the commercial BPM or electrospun BPM in fuel cell mode.
- A 2D BPM with carbon in the junction was optimized for fuel cell operation.
- We are able to achieve 550 mA/cm² in fuel cell mode and 1000 mA/cm² in electrolysis mode with the same 2D BPM
- Future work
 - Optimizing the 3D junction of electrospun BPM for RFC
 - Optimizing the electrode and hardware for continuous RFC operation

Thank You

www.nrel.gov

NREL/PR-5900--76878

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

