Mesoporous Carbon-Based PGM-Free Catalyst Cathodes

PI: Jian Xie

Purdue School of Engineering (Indianapolis) A Purdue University School A Purdue University Indianapolis (IUI

Indiana University Purdue University Indianapolis (IUPUI) May 20, 2020

Project ID: FC303

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline and Budget

- Project Start Date: October 1, 2018
- Project End Date: December 31, 2020
- Percent complete: 50%
- Total Project Budget: \$1,430K
 - Total Recipient Share: \$427K
 - Total Federal Share: \$1,002K
 - Total DOE Funds Spent*: \$474K

* As of 3/01/2020

Barriers

A. Performance. Increase catalyst activity, improve the catalyst utilization, and facilitate the water dissipation to achieve the high-power density operation

B. Cost. Reduce the cost of PEM fuel cells using Precious Group Metal (PGM)-Free catalysts to replace PGM catalysts

C. Durability. Enhance the stability of PGMfree catalysts at relevant fuel cell operating conditions

Project lead

Indiana University Purdue University Indianapolis (IUPUI)

• PI: Jian Xie

Partners

University at Buffalo (UB) SUNY

• PI: Gang Wu

United Technologies Research Center (UTRC)

• PI: Zhiwei Yang

United Technologies Research Center

> **University at Buffalo** The State University of New York

Electrocatalysis Consortium Members

Relevance

• Technical Targets and Status

	Performance metrics	Unit	DOE Target (?)	Project Status	Y1 Milestone	Project Goal
	Intrinsic activity (E _{1/2})	V	>0.850	0.830	>0.820	0.850
Catalyst	Stability (potential loss after					
	30K cycles(0.6-1.0V)), (E _{1/2})	mV	< 30	30	< 30	20
	Activity (H_2/O_2)					
	@ 0.9 V _{IR-free*}	mA/cm ²	44	33	25	44
MEA	Activity (H ₂ /air)					
	@ 0.8 V*	mA/cm ²	150	133	100	150
	Peak Power density	mW/cm ²	500	480	300	500

* Backpressure: 150 Kpa abs

- Objectives
 - Design and develop hierarchically porous carbon sphere (HPCS)@M-N-C catalysts for PGM-free cathodes in PEMFCs through controllable synthesis to achieve
 - High density of accessible active sites
 - Hierarchy pore structure
 - Develop rationally designed ionomer/catalyst interface of PGM-Free catalyst membrane electrode assemblies (MEAs) to achieve
 - High catalyst utilization and high mass activity
 - High mass transport performance via systematically optimizing MEA structure
 - Ink formulation
 - Ionomer effect
 - MEA fabrication process

Approach (Overview)

Develop hierarchically porous carbon sphere (HPCS) PGM-Free Catalysts.

- Rationally design ionomer/catalyst interfaces utilizing charge attraction.
- Systematically optimize MEA (ink formulation, ionomer, fabrication methods).

Approach/Milestone

Milestone 1 . Catalyst Development (FY1	(Accomplished)	
1.1 Scale up mesoporous synthesis > 5.0	(100%)	
1.2 Achieve E_{γ_2} > 0.82 V and generate 0.2	(100%)	
1.3 Achieve E_{γ_2} > 0.85V, generate 0.50 m	(100%)	
(Go-No G	io Decision Met)	
<u>Milestone 2</u> . MEA Development (FY19-2	<u>20)</u> (Accomplishe	
2.1 Achieve MEA : 25 mA/cm ² (H_2/O_2 , 0.	9.90 V _{IR-free} , 150 KPa) (1009	
Phenolic resin Nucleation H_0 H_2	Synthesize HPCS Catalysts: Designing and synthesizing method and the further coa electrocatalytic layer as the	HPCSs <i>via</i> a template ating of the M-N-C HPCS@M-N-C
Image: second	 Construct "ideal" ionomer/ Spontaneously forming ion interface via charge attractio ("+" charge} and ionomer (" Controlling charge attraction ionomer coverage (higher in thinner ionomer film (lower barrier, higher high current performance) 	Catalyst interface: omer/catalyst on between catalyst '-" charge) particles n resulting in higher mass activity) and er O ₂ diffusion t density

Ψ

IUPU

FULFILLING the PROMISE

A variety of innovative Fe-N-C catalysts were developed by using template methods with continuously improving MEA performance, approaching DOE targets

Approach 1: Synthesis of core-shell structured Fe-N-C Catalysts

High activity of active site; high surface area, micro/mesopores distribution

Core-shell structured Fe-N-C catalyst enriched Fe-N_4 sites at the surface enhanced mass transport and kinetic activity, related to other Fe-N-C catalysts from chemical doping and adsorption

University at Buffalo

The State University of New York

Comparison of Various Fe-N-C catalysts

Core-shell structured Fe-N-C catalyst has optimal porosity to host dense active site and yield the most effective mass transport

Approach 2: Innovative CVD growth of mesoporous Fe-N-C catalyst

(1) Synthesis of Fe -doped ZnO nanosheets ; (2) CVD growth of Fe doped Zn(mim), and pyrolysis to obtain atomically dispersed Fe-N-C catalyst

XAS analysis furtehr verify the atomically dispersed and nitrogen coordinated FeN₄ sites exclusively in the catalyst from CVD methods.

(a-c) Morphologies of (a) Fe-ZnO template, (b)Fe-Zn(mim), precursors, and (c) the CVD/Fe-N-C catalyst; (d-f) STEM images along with EEL point spectra confirm the single Fe site dispersion in the CVD/Fe-N-C catalyst

University at Buffalo The State University of New York

ORR activity and MEA performance of CVD Fe-N-C catalysts

high activity of active site; low surface area, micro/mesopores distribution

Scale-up Synthesis Study

(a) Pictures of 2 methylimidazole and Fe-ZnO powder, (b) the obtained mesoporous CVD/Fe-N-C catalyst; (c-d) the vial loaded with ~ 0.55 g of the mesoporous 0.17 CVD/Fe-N-C catalyst

The newly developed CVD methods can synthesize atomically dispersed single Fe catalysts in a large scale with comparable ORR activity

Functionalize Catalyst with Positive Charge for Building Ionomer/catalyst Interface

Surface charge grafting:

- Covalently grafting -NH₂ group on catalyst surface for adding positive charges.
- □ Direct diazonium reaction leading to loss of ORR activity.
- Adopt new approach: (1) masking active center, (2) diazonium reaction, and (3) demasking active center.

PGM-Free Catalyst from UB: 180515-HZ Fe-MOF-cat-100nm

2nd approach for functionalizing catalyst: **Mild** and **Nondestructive** Functionalization

Surface charge addition:

- □ No masking needed.
- NH₂ group is covalently grafted on the surface of the PGM-free catalysts for positive charge.
- ☐ 70% performance achieved after functionalization.
- ❑ Need to further improve the performance recovery.

Rational Design MEA: from ink to the solid porous catalyst layer

Dispersion of catalyst and ionomer in H₂O/n-PA System studying with Ultra Small Angle X-ray Diffraction (USAXS)+ Cyro-TEM

USAXS data of ionomer and catalyst dispersion in H_2O/n -PA mixtures (a), USAXS fitting results of ionomer (lower) and catalyst particle (upper) size (b), ionomer particle size distribution in H_2O/n -PA mixtures (c), cyro-TEM images of ionomer and catalyst particles in H_2O/n -PA=1:4, (d), H_2O/n -PA=1:1, (e), H_2O/n -PA=4:1, (f), and all with I/C=1.0

Systematic Study of Catalyst and ionomer dispersion in H_2O/n -PA mixtures :

- Disperse both catalyst and ionomer in a solvent system.
- □ Morphology and geometry of catalyst, ionomer changing with different solvents.
- □ Ionomer particle size increasing with n-PA content, better dispersed in low n-PA content.
- \square Both catalyst and ionomer well dispersed at 70% H₂O content.
- □ Ionomer rods surrounding catalyst particle observed by cyro-TEM for 1:1 ratio solvent.

Rational Design MEA: from ink to the solid porous catalyst layer

Dispersion of catalyst and ionomer in H₂O/n-PA System studying with Ultra Small Angle X-ray Diffraction (USAXS)+ Cyro-TEM

H ₂ O: nPA volume ratio	Shape factor zone I	Mean particle size zone I (nm)	Shape factor zone II	Mean particle size (nm) zone II
10:1	4	2.62±0.10	3.124	490±50
8:1	4	2.72 ± 0.09	3.207	580±60
4:1	4	2.67 ± 0.15	3.291	610±40
2:1	4	2.62 ± 0.18	3.335	560±39
1:1	4	3.11±0.17	3.275	760±50
1:2	4	3.60 ± 0.27	3.289	630±60
1:4	4	2.90 ± 0.23	3.355	710±82
1:8	4	2.74 ± 0.38	3.265	650±50
1:10	4	3.52 ± 0.24	3.353	580±60
1:16	4	3.82 ± 0.22	3.32	610±69

Systematic Study of Catalyst and ionomer dispersion in H₂O/n-PA mixtures :

- Disperse both catalyst and ionomer in a solvent system.
- □ Morphology and geometry of catalyst, ionomer changing with different solvents.
- □ Ionomer particle size increasing with n-PA content, better dispersed in low n-PA content.
- **D** Both catalyst and ionomer well dispersed at 70% H_2O content.
- □ Ionomer rods surrounding catalyst particle observed by cyro-TEM for 1:1 ratio solvent.

Rational Design MEA: from ink to the solid porous catalyst layer

Dispersion of catalyst and ionomer in H₂O/i-PA System studying with Ultra Small Angle X-ray Diffraction (USAXS)+ Cyro-TEM

Systematic Study of Catalyst and ionomer dispersion in H₂O/i-PA mixtures:

- Disperse both catalyst and ionomer in a solvent system.
- □ Morphology and geometry of catalyst, ionomer changing with different solvents.
- \Box Ionomer particle smallest size at 50% H₂O.
- **\Box** Catalyst particle smallest size at 90% H₂O.
- \Box Combined ionomer and catalyst particle size at 50% H₂O content.

Technical Accomplishment Rational Design MEA: from ink to the solid porous catalyst layer

Solvent Effect on the Pore Structure of Catalyst Layer and MEA Performacne

MEA: 5 cm², anode: $0.2mg_{Pt}/cm^2/Fe-N-C$ cathode: 4 mg/cm², N212 80°C_100% RH 200:400 sccm H₂/O₂, 500:1000 sccm H₂/air, 150KPaabs

w/n	R_{Ω}	Ranode	R _{cathode}	R _{mt}	-	iPa-water (1-1)	iPa-water (1-4)	iPa-water (4-1)
4:1	91.0	30.4	127.3	11.7	Pore volume 0-20nm (mL/g)	0.104	0.128	0.107
1:1	97.3	37.6	90.9	28.6	Pore volume 20-200nm (mL/g)	0.391	0.147	0.199
1:4	105.5	24.5	159.7	18.1	Mesopore percentage (%)	79.1	53.3	65.0

$Z'(m\Omega\cdot cm^2)$					
	H ₂ -	02	H₂-a	ir	
Ink combination	j@0.9 V _{iR-Free} (mA cm ⁻²)	Pmax (W cm ⁻²)	j@0.8 V (mA cm ⁻²)	Pmax (W cm ⁻²)	
iPa-Water (1-1)	30	0.639	60.44	0.40	
iPa-Water (1-4)	30.5	0.642	59.42	0.32	
iPa-Water (4-1)	32	0.522	65.87	0.34	

Solvent Effect on MEA (H₂O/i-PA mixtures) :

- Less effect on mass activity (high voltage).
- Strong effect on mass transport (H_2 /Air).
- Solvent with 1:1 (i-PA:H₂O) ratio has the highest pore volume, mesopores percentage and R_{cathode} (AC impedance), well correlated with mass transport.

MEA Fabrication Methods

Gas Diffusion Electrode (GDE) vs. Catalyst Coated Membrane (CCM)

MEA: 5 cm², anode: $0.2mg_{Pt}/cm^2/Fe-N-C PGM$ -Free cathode: 3.6-4 mg/cm², N212 80°C_100% RH 200:400 sccm H₂/O₂, 500:1000 sccm H₂/Air, 150KPaabs

GDE	31	0.78	86	0.41
Sprayed 1:1 (4125)	35	0.64	100	0.45

Fabrication Method Comparison:

- Machine sprayed CCM with similar performance with that of GDE for mass activity.
- □ Machine sprayed CCMs with high reproducibility.

MEA Fabrication Methods

MEA: 5 cm², anode: $0.2mg_{Pt}/cm^2/Fe-N-C$ cathode: 3.6-4 mg/cm², N212 80°C_100% RH 200:400 sccm H₂/O₂, 500:1000 sccm H₂/Air, 150K Paper

150KPaabs

Hot Press	_	_	_	_		
Hot Press	25	0.72	84	0.43		
Non hot press	32	0.64	73	0.48		
 Fabrication Method-Hot Press Effect for Sprayed CCM: Hot press leading to lower mass activity. Hot press resulting in higher peak power for O₂. Non hot press making higher resistance but higher mass activity. Non hot press leading to better air performance. 						

Technical Accomplishment Response to Previous Year Reviewers' Comment

Approach

Comment: The approach involves functionalizing only the surface of this large particle and not the mesopores.

<u>Response</u>: functionalization utilizes the wet chemistry, e.g. diazonium reaction or other reactions in liquids (e.g. H_2O). The UB's PGM-free catalyst is somewhat hydrophilic (can be dispersed in H_2O). To ensure the functionalization, sonication will be used to enhance the liquids penetrating into mesopores. Micropore should not be affected as ionomer particles can't go into them.

Comment: It is not clear how the ionomer thickness and distribution are being controlled.

<u>**Response</u>**: The ideal is to increase the ionomer coverage by charge attraction while reducing the thickness of ionomer film. This has been proved by our and other's publications.</u>

Comment: Adding mesoporosity, ideal ionomer interface and ink formulations.....

<u>**Response</u>**: The goal is indeed to increase the accessible density of active sites. Ink formulation has a large portion in the project as reported. Surface groups includes –NH2, polybenzimidiazole (PBI), and polyaniline (PANI).</u>

Response to Previous Year Reviewers' Comment

Collaboration

Comment: Working with National Lab. *<u>Response</u>*: currently, closely working with ANL on USAXS, XAS and modeling and ORNL on TEM.

Relevance/potential impact

Comment: PGM-free catalyst scale-up. <u>**Response</u>**: up to 5 g synthesis has been achieved.</u>

Future work

Comment: Little attention to ionomer effect..... <u>*Response*</u>: Ionomer loading in catalyst layer and ionomer dispersion in ink are heavily investigating.

Project weakness

Comment: How functionalization affects ionomer coverage and thickness need to be added. **Response**: This is being actively studied.

Comment: Project management and communication. <u>*Response*</u>: bi-weekly meeting and PI meeting.

Recommendation

Comment: Modeling effort is needed. <u>**Response</u>**: Working closely with ANL (Rajesh's group)</u>

Comment: Durability testing. *<u>Response</u>*: It is undertaking.

Collaboration and Coordination

Institution	Project Role					
IUPUI-Leading PI	Project lead, management and cordination, construct					
(J. Xie, Y. Liu, C.	ionomer/catalyst interface vai charge attraction, MEA design,					
Li and G. Qing) ink formulation, MEA testing and characterization						
UB- Co-PI(G.	Design and develop advanced <i>hierarchically porous carbon</i>					
Wu, Shengwei	sphere (HPCS)@M-N-C catalysts for PGM-free cathodes in					
Liu)	PEMFCs through controllable synthesis					
	Test, diagnose sub-scale MEAs (25-50 cm ²) and carry out the					
UTRC (JV. Yang)	economic analysis					
	ElectroCat Consortium					
Institution (Capability					
l	Jltra-small Angle X-ray Scattering (USAXS), in situ					
ANL a	and Operando Atomic, Nano-, and Micro-structure					
(Characterization (X-ray adsorption, including ex-					
ORNL E	Electron microscopy (TEM, ELLS, etc.)					
Kinetics and Transport (Operando differential cell						
r	neasurements of electrochemical kinetics and					
NREL t	ransport)					

Remaining Challenges and Barriers

- Increase activity of PGM-Free catalyst while improving stability.
- Construct ideal ionomer/catalyst interface via charge attraction.
- Functionalize PGM-Free catalyst with desired charge density while maintain high performance.
- Increase MEA mass activity while improve power performance with air.

- Synthesize core-shell structured Fe/Co-N-C catalyst with high activity and high stability.
- Optimize the functionalization methods for controlling the surface charge of PGM-Free catalyst while maintain high activity and stability.
- Develop machine sprayed CCM with both high mass activity and high-power performance.
- Optimize ink formulation on ionomer/carbon ratio and different solvent systems.

Summary

- The developed core-shell structured Fe/Co-N-C catalyst exceeds year 1 milestone (33 mA/cm² at 0.90 V_{IR-free} in H_2/O_2 , 133 mA/cm² at 0.80 V, 480 mW/cm², H_2 /Air).
- Developed machine sprayed MEAs with the same performance of GDE.
- Achieved simultaneously dispersion of ionomer and catalyst particles aiding by USAXS+cyro-TEM.
- Rationally designed MEA from ink to solid porous layer using USAXS+cyro-TEM, and Hg porosimetry.
- Developed new methods for PGM-Free catalyst functionalization.

Technical Back-up Slides

Future direction: Core-shell structured Fe/Co-N-C Catalysts

Core-shell Co@Fe catalyst exhibited encouraging RDE activity $E_{1/2}$ =0.85 V and enhanced stability relative to Fe@Fe catalyst due to the more stable carbon structures

AC Impedance of MEA

Rational Design MEA: from ink to the solid porous catalyst layer

Dispersion of catalyst and ionomer in H₂O/n-PA System studying with Ultra Small Angle X-ray Diffraction (USAXS)+ Cyro-TEM

H ₂ O: nPA volume ratio	Shape factor zone I	Mean particle size zone I (nm)	Shape factor zone II	Mean particle size (nm) zone II	
10:1	4	2.62±0.10	3.124	490±50	
8:1	4	2.72 ± 0.09	3.207	580±60	4= sphere
4:1	4	2.67 ± 0.15	3.291	610±40	3=disc
2:1	4	2.62 ± 0.18	3.335	560±39	
1:1	4	3.11±0.17	3.275	760 ± 50	
1:2	4	$3.60{\pm}0.27$	3.289	630±60	
1:4	4	$2.90{\pm}0.23$	3.355	710±82	
1:8	4	$2.74{\pm}0.38$	3.265	650 ± 50	
1:10	4	3.52 ± 0.24	3.353	580 ± 60	
1:16	4	3.82±0.22	3.32	610±69	

Systematic Study of Catalyst and ionomer dispersion in H_2O/n -PA mixtures :

- Disperse both catalyst and ionomer in a solvent system.
- □ Morphology and geometry of catalyst, ionomer changing with different solvents.
- □ Ionomer particle size increasing with n-PA content, better dispersed in low n-PA content.
- \square Both catalyst and ionomer well dispersed at 70% H₂O content.
- □ Ionomer rods surrounding catalyst particle observed by cyro-TEM for 1:1 ratio solvent.

Rational Design MEA: from ink to the solid porous catalyst layer Dispersion of catalyst and ionomer in H₂O/i-PA System studying with Ultra Small Angle X-ray Diffraction (USAXS)+ Cyro-TEM

Table 2 Particle size and shape information in different catalyst inks i-PA and water system

H ₂ O: iPA volume ratio	Shape factor zone I	Mean particle size zone I (nm)	Size range Zone I (nm)	Shape factor zone II	Mean particle size (nm) zone II
8:1	4	2.34±0.17	0.5-10	3.358	500±25
6:1	3.275	3.68±0.45	0.5-11	3.421	530±46
4:1	3.323	$2.40{\pm}0.25$	0.5-9	3.372	590±62
2:1	3.518	4.03±0.43	0.5-11	3.362	580±57
1:1	3.836	4.60±0.43	1-8	3.302	630±91
1:2	4	3.88±0.27	1-30	3.461	520±52
1:6	4	4.22±0.33	1-15	3.243	700±71
1:10	4	4.18±0.21	1-30	3.364	580±89

Root Cause Analysis

PGM-Free MEA fabrication optimization

Anode: 20wt. % Pt/XC72 ETEK $0.2mg_{Pt}/cm^2$ Cathode: 20mg Fe₂O₃ ZIF PGM-Free CAT $4mg_{cat}/cm^2$ EIS test under 5A @ 300-500 sccm (H₂-O₂)

	iPa-water (1-1)	iPa-water (1-4)	iPa-water (4-1)
Pore volume 0-20nm (mL/g)	0.103517	0.128467	0.107344
Pore volume 0-200nm (mL/g)	0.391498	0.146661	0.198963
Mesopore percentage (%)	0.790881084	0.53306461	0.649554205

