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Overview 
Timeline and Budget Project lead 

• Project Start Date: October 1, 2018 
• Project End Date: December 31, 2020 
• Percent complete: 50% 
• Total Project Budget: $1,430K 

• Total Recipient Share: $427K 
• Total Federal Share: $1,002K 
• Total DOE Funds Spent*: $474K 
* As of 3/01/2020 

Barriers 
A. Performance. Increase catalyst activity, 
improve the catalyst utilization, and facilitate 
the water dissipation to achieve the high-
power density operation 
B. Cost. Reduce the cost of PEM fuel cells 
using Precious Group Metal (PGM)-Free 
catalysts to replace PGM catalysts 
C. Durability. Enhance the stability of PGM-
free catalysts at relevant fuel cell operating 
conditions 

Indiana University Purdue University
Indianapolis (IUPUI) 
• PI: Jian Xie 

Partners 
University at Buffalo (UB) SUNY 
• PI: Gang Wu 

United Technologies Research Center 
(UTRC) 
• PI: Zhiwei Yang 

Electrocatalysis Consortium Members 
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Relevance 
• Technical  Targets and Status 

Performance metrics Unit DOE Target (?) Project Status Y1 
Milestone 

Project 
Goal 

Catalyst 
Intrinsic activity (E1/2 ) V >0.850 0.830 >0.820 0.850 
Stability (potential loss after 
30K cycles(0.6-1.0V)), (E1/2 ) mV < 30 30 < 30 20 
Activity (H2/O2) 
@ 0.9 VIR-free* mA/cm2 44 33 25 44 

MEA Activity (H2/air) 
@ 0.8 V* mA/cm2 150 133 100 150 
Peak Power density mW/cm2 500 480 300 500 
* Backpressure: 150 Kpa abs 

• Objectives 
– Design and develop hierarchically porous carbon sphere (HPCS)@M-N-C 

catalysts for PGM-free cathodes in PEMFCs through controllable synthesis to
achieve 

• High density of accessible active sites 
• Hierarchy pore structure 

– Develop rationally designed ionomer/catalyst interface of PGM-Free catalyst
membrane electrode assemblies (MEAs) to achieve 

• High catalyst utilization and high mass activity 
• High mass transport performance via systematically optimizing MEA structure 

– Ink formulation 
– Ionomer effect 
– MEA fabrication process 
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Approach (Overview) 
 Develop hierarchically porous carbon sphere (HPCS) PGM-Free Catalysts. 
 Rationally design ionomer/catalyst interfaces utilizing charge attraction. 
 Systematically optimize MEA (ink formulation, ionomer, fabrication methods). 

Highly Active & 
Durable  PGM-Free 

MEA 

Mesoporous 
PGM-Free 

Catalyst 

Novel 
Catalyst/ionomer 

interface 

MEA Systematic 
Optimization 

Characterization 
MEA Micro-

structure 
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Approach/Milestone 
Milestone 1. Catalyst Development (FY19-20) (Accomplished) 
1.1 Scale up mesoporous synthesis > 5.0 g catalysts  (100%) 
1.2 Achieve E½ > 0.82 V and generate 0.25 mA/cm2 at 0.90 V  (100%) 
1.3 Achieve E½ > 0.85V, generate 0.50 mA/cm2 (at 0.90 VIR-free)  (100%) 

(Go-No Go Decision Met) 
Milestone 2. MEA Development (FY19-20) (Accomplished) 
2.1 Achieve MEA : 25 mA/cm2 (H2/O2, 0.90 VIR-free , 150 KPa)  (100%) 

Synthesize HPCS Catalysts: 
 Designing and synthesizing HPCSs via a template 

method and the further coating of the M-N-C 
electrocatalytic layer as the HPCS@M-N-C 

Construct “ideal” ionomer/catalyst interface: 
 Spontaneously forming ionomer/catalyst 

interface via charge attraction between catalyst 
(“+” charge} and ionomer (“-” charge) particles 

 Controlling charge attraction resulting in higher 
ionomer coverage (higher mass activity) and 
thinner ionomer film (lower O2 diffusion 
barrier, higher high current density 
performance) 
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Technical Accomplishment 

Overview of Mesoporous Fe-N-C Catalyst Development 

5. Core-shell 
structured Fe-N-C 

DOE 
Targets 

33 mA cm-2 @0.9 V IR-free 4. Novel meso-Fe-N-C 

150 mA cm-2@0.8 V-air 

6 mA cm-2 @0.9 V IR-free 

68 mA cm-2@0.8 V-air 

110 mA cm-2@0.8V-air 33 mA cm-2 @0.9 V IR-free 44 mA cm-2 @0.9 V IR-fr3. CVD/Fe-N-C 71 mA cm-2@0.8 V-air 27 mA cm-2 @0.9 V IR-free 

117mA cm-2@0.8 V-air 

2.Meso PANI/Fe-N-C Derived from 
24 mA cm-2 @0.9 V IR-free ZC@FeTPP-69 mA cm-2@0.8 V-air Derived from polym mesoporous Derived from 

1. PANI/Fe-N-C CVD growth of MOF templates 

Fe-Zn(mIm)2Derived from 
ZIF8@PANI 
hydrogel 

Derived from 
PANI hydrogel 

A variety of innovative Fe-N-C catalysts were developed by using template methods 
with continuously improving MEA performance, approaching DOE targets 
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Technical Accomplishment 

Approach 1: Synthesis of core-shell structured Fe-N-C Catalysts 

NN 

N Fe NN Fe N 
ClCl NN 

N AlCl3 Pyrolysis 
N Fe N N

Cl N Fe N 
ClN N 

NN 

N Fe NN Fe N 
ClCl NNFeTPP ZIF-8-derived 

Carbon (ZC) 
(CMP-Fe)@ZC Core-shell Fe-N-C 

EDX Mapping and Spectrum 
 The polymer coating does not cause 

significant changes of morphology 
and size of carbon particles. 

 As the core, the porous carbon 
framework derived from ZIF-8 can be 
encapsulated in the core-shell 
structure. 

 After pyrolysis, the obtained core-
shell structured Fe-N-C enhances the 
porosity of the carbon matrix, more 
defects and more exposed surface Fe 
active sites, which are all beneficial 
for MEA performane. 

High activity of active site; high surface area, micro/mesopores distribution 
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Technical Accomplishment 

Innovative Core-shell structured Fe-N-C catalysts 
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Core-shell structured Fe-N-C catalyst enriched Fe-N4 sites at the surface 
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Technical Accomplishment 

ORR activity and Stability of Core-Shell structured Catalysts 

 During the synthesis, the ratios of 
0 core and shell and the heating 
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Technical Accomplishment 

Comparison of Various Fe-N-C catalysts    

     
   

Core-shell structured Fe-N-C catalyst has optimal porosity to host 
dense active site and yield the most effective mass transport 
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Technical Accomplishment 

Approach 2:  Innovative CVD growth of mesoporous Fe-N-C catalyst 
Mesopore feature CVD synthesis methods 
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Morphology, mesostructures, and atomic dispersion FeNx sites 

(1) Synthesis of Fe -doped ZnO nanosheets ; (2) CVD growth 
of Fe doped Zn(mim)2 and pyrolysis to obtain atomically 
dispersed Fe-N-C catalyst 

 FePc
 0.17CVD/Fe-N-C 3 
 Fe 2
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XAS analysis furtehr verify the atomically dispersed and (a-c) Morphologies of (a) Fe-ZnO template, (b)Fe-Zn(mim)2
nitrogen coordinated FeN4 sites exclusively in the catalyst precursors, and (c) the CVD/Fe-N-C catalyst; 
from CVD methods. (d-f) STEM images along with EEL point spectra confirm the 

single Fe site dispersion in the CVD/Fe-N-C catalyst 
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Technical Accomplishment 

ORR activity and MEA performance of CVD Fe-N-C catalysts 

RDE in 0.5 M H2SO4 H2-O2, 1.0 bar H2-air 1.0 bar 
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high activity of active site; low surface area, micro/mesopores distribution 
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Technical Accomplishment 

Scale-up Synthesis Study 

0 

-1 

-2 

-3 

-4 

80 mg 0.17CVD/Fe-N-C
282 mg 0.17CVD/Fe-N-C
549 mg 0.17CVD/Fe-N-C 

Loading: 0.6 mg cm-2, 0.5 M 
H2SO4, 900 rpm, 25oC 

0.0 0.2 0.4 0.6 0.8 1.0 
(a) Pictures of 2 methylimidazole and Fe-ZnO powder, (b) the 
obtained mesoporous CVD/Fe-N-C catalyst; (c-d) the vial loaded 
with ~ 0.55 g of the mesoporous 0.17 CVD/Fe-N-C catalyst 

The newly developed CVD methods can synthesize atomically dispersed single Fe catalysts 
in a large scale with comparable ORR activity 
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Technical Accomplishment 

Functionalize Catalyst with Positive Charge for Building Ionomer/catalyst Interface 

Masking the Fe-N_C active 
center via Chem Absorption 
with NO2 (Oxidation) 

– 
– 
– 

+ N N 
+ 

Y Functionalization of catalyst 
via diazonium reaction 

PGM-Free Catalyst Diazonium Salt Functionalized Catalyst 

De-masking via Chem 
Desorption (Reduction) 

  

 
 

 

  

 
    

        
       

  

 

  

X reacts with CB surface 
R linking group 
Y NH2 functional group 

Surface charge grafting: 
 Covalently grafting -NH2 group on catalyst surface for adding positive charges. 
 Direct diazonium reaction leading to loss of ORR activity. 
 Adopt new approach: (1) masking active center, (2) diazonium reaction, and (3) de-

masking active center. 
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Technical Accomplishment 

Masking Method For Protecting Active Sites of PGM-Free Catalysts 
11 

Before Recover 
After recover 
Pristine 
0-1V Recovery 
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E(V) vs RHE 
Surface Masking/de-masking: 
 Mass activity (MA) remains 

unchanged at 0.9 V after 
masking and de-masking. 

 Slightly change of activity at 
higher current density. 

E (V vs SHE.) 

Surface Charge Grafting via 
Masking/Functionalizing/De-masking: 
 Performance loss after the treatment 
 De-masking recovers the performance 
 Further de-masking by extending 

potential range of cycling recovers more 
performance 

PGM-Free Catalyst from UB: 180515-HZ Fe-MOF-cat-100nm 
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PPA = Polyphosphoric acid 

Technical Accomplishment 

2nd approach for functionalizing catalyst: Mild and 
Nondestructive Functionalization 

Before Functionalization 
After Functionalization 

0 

0.0 0.2 0.4 0.6 0.8 1.0 
E (V vs. RHE) 

Surface charge addition: 
 No masking needed. 
 NH2 group is covalently grafted on the surface of the PGM-free catalysts for positive 

charge. 
 70% performance achieved after functionalization. 
 Need to further improve the performance recovery. 
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Technical Accomplishment 

Rational Design MEA: from ink to the solid porous catalyst layer 
Dispersion of catalyst and ionomer in H2O/n-PA System studying with Ultra Small 

USAXS data of ionomer and catalyst dispersion in H2O/n-PA mixtures (a), USAXS fitting results of ionomer (lower) and catalyst particle 

a c 

d e f 

Angle X-ray Diffraction (USAXS)+ Cyro-TEM 

(upper) size (b), ionomer particle size distribution in H2O/n-PA mixtures (c), cyro-TEM images of ionomer and catalyst particles in 
H2O/n-PA=1:4, (d), H2O/n-PA=1:1, (e), H2O/n-PA=4:1, (f), and all with I/C=1.0 

Systematic Study of Catalyst and ionomer dispersion in H2O/n-PA mixtures : 
 Disperse both catalyst and ionomer in a solvent system. 
 Morphology and geometry of catalyst, ionomer changing with different solvents. 
 Ionomer particle size increasing with n-PA content, better dispersed in low n-PA content. 
 Both catalyst and ionomer well dispersed at 70% H2O content. 
 Ionomer rods surrounding catalyst particle observed by cyro-TEM for 1:1 ratio solvent. 
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Technical Accomplishment 
Rational Design MEA: from ink to the solid porous catalyst layer 

Dispersion of catalyst and ionomer in H2O/n-PA System studying with Ultra Small 
Angle X-ray Diffraction (USAXS)+ Cyro-TEM 

H2O: nPA 
volume ratio 

Shape factor 
zone I 

Mean particle 
size zone I (nm) 

Shape factor 
zone II 

Mean particle 
size (nm) zone II 

10:1 4 2.62±0.10 3.124 490±50 
8:1 4 2.72±0.09 3.207 580±60 
4:1 4 2.67±0.15 3.291 610±40 
2:1 4 2.62±0.18 3.335 560±39 
1:1 4 3.11±0.17 3.275 760±50 
1:2 4 3.60±0.27 3.289 630±60 
1:4 4 2.90±0.23 3.355 710±82 
1:8 4 2.74±0.38 3.265 650±50 

1:10 4 3.52±0.24 3.353 580±60 
1:16 4 3.82±0.22 3.32 610±69 

Systematic Study of Catalyst and ionomer dispersion in H2O/n-PA mixtures : 
 Disperse both catalyst and ionomer in a solvent system. 
 Morphology and geometry of catalyst, ionomer changing with different solvents. 
 Ionomer particle size increasing with n-PA content, better dispersed in low n-PA content. 
 Both catalyst and ionomer well dispersed at 70% H2O content. 
 Ionomer rods surrounding catalyst particle observed by cyro-TEM for 1:1 ratio solvent. 
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Technical Accomplishment 
Rational Design MEA: from ink to the solid porous catalyst layer 

Dispersion of catalyst and ionomer in H2O/i-PA System studying with Ultra Small 
Angle X-ray Diffraction (USAXS)+ Cyro-TEM 
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Systematic Study of Catalyst and ionomer dispersion in H2O/i-PA mixtures: 
 Disperse both catalyst and ionomer in a solvent system. 
 Morphology and geometry of catalyst, ionomer changing with different solvents. 
 Ionomer particle smallest size at 50% H2O. 
 Catalyst particle smallest size at 90% H2O. 
 Combined ionomer and catalyst particle size at 50% H2O content. 
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Technical Accomplishment 
Rational Design MEA: from ink to the solid porous catalyst layer 

Solvent Effect on the Pore Structure of Catalyst Layer and MEA Performacne 
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iPa -Water  (1  -1)  30  0 .639 60 .44 0 .40  volume, mesopores percentage and Rcathode (ACiPa -Water  (1  -4)  30 .5  0 .642 59 .42 0 .32  
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Technical Accomplishment 
MEA Fabrication Methods 

Gas Diffusion Electrode (GDE) vs. Catalyst Coated Membrane (CCM) 
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MEA: 5 cm2, anode:  0.2mgPt/cm2 /Fe-N-C PGM-Free cathode: 3.6-4 mg/cm2 , N212 80°C_100% RH 200:400 sccm H2/O2 ,500:1000 sccm 
H2/Air, 150KPaabs 

Fabrication Method Comparison: 
 Machine sprayed CCM with similar performance 
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Sprayed 1:1 (4125) 
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with that of GDE for mass activity. 
 Machine sprayed CCMs with high reproducibility. 
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Technical Accomplishment 
MEA Fabrication Methods 
Hot Press vs. Non Hot Press 
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MEA: 5 cm2, anode:  0.2mgPt/cm2 /Fe-N-C cathode: 3.6-4 mg/cm2 , N212 80°C_100% RH 200:400 sccm H2/O2 ,500:1000 sccm H2/Air, 
150KPaabs 

Hot Press 
– – – – 

H  o  t  P  r  e  s  s  25  0 .  72  84 0 .43  

N o n  h  o  t  p  r  e  s  s  32  0 .  64  73 0 .48  

Fabrication Method-Hot Press Effect for Sprayed CCM: 
 Hot press leading to lower mass activity. 
 Hot press resulting in higher peak power for O2. 
 Non hot press making higher resistance but higher mass activity. 
 Non hot press leading to better air performance. 
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Technical Accomplishment 

Response to Previous Year Reviewers’ Comment 
Approach 
Comment: The approach involves functionalizing only the surface of this large 
particle and not the mesopores. 
Response: functionalization utilizes the wet chemistry, e.g. diazonium reaction 
or other reactions in liquids (e.g. H2O). The UB’s PGM-free catalyst is somewhat 
hydrophilic (can be dispersed in H2O). To ensure the functionalization, 
sonication will be used to enhance the liquids penetrating into mesopores. 
Micropore should not be affected as ionomer particles can’t go into them. 
Comment: It is not clear how the ionomer thickness and distribution are being 
controlled. 
Response: The ideal is to increase the ionomer coverage by charge attraction 
while reducing the thickness of ionomer film. This has been proved by our and 
other’s publications. 
Comment: Adding mesoporosity, ideal ionomer interface and ink 
formulations…… 
Response: The goal is indeed to increase the accessible density of active sites. 
Ink formulation has a large portion in the project as reported. Surface groups 
includes –NH2, polybenzimidiazole (PBI), and polyaniline (PANI). 
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Technical Accomplishment 

Response to Previous Year Reviewers’ Comment 
Collaboration 
Comment: Working with National Lab. Response: currently, closely working with 
ANL on USAXS, XAS and modeling and ORNL on TEM. 
Relevance/potential impact 
Comment: PGM-free catalyst scale-up. Response: up to 5 g synthesis has been 
achieved. 
Future work 
Comment: Little attention to ionomer effect…… Response: Ionomer loading in 
catalyst layer and ionomer dispersion in ink are heavily investigating. 
Project weakness 
Comment: How functionalization affects ionomer coverage and thickness need 
to be added. Response: This is being actively studied. 
Comment: Project management and communication. Response: bi-weekly 
meeting and PI meeting. 
Recommendation 
Comment: Modeling effort is needed. Response: Working closely with ANL 
(Rajesh’s group) 
Comment: Durability testing. Response: It is undertaking. 
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Collaboration and Coordination 

Institution Project Role 
IUPUI-Leading PI Project lead, management and cordination, construct 
(J. Xie, Y. Liu, C. 
Li and G. Qing) 
UB- Co-PI(G. 
Wu, Shengwei 
Liu) 

UTRC (JV. Yang) 

Institution 

ANL 

ORNL 

NREL 

ionomer/catalyst interface vai charge attraction,  MEA design, 
ink formulation, MEA testing and characterization 
Design and develop advanced hierarchically porous carbon 
sphere (HPCS)@M-N-C catalysts for PGM-free cathodes in 
PEMFCs through controllable synthesis 
Test, diagnose sub-scale MEAs (25-50 cm2)  and carry out the 
economic analysis 

ElectroCat Consortium 
Capability
Ultra-small Angle X-ray Scattering (USAXS), in situ 
and Operando Atomic, Nano-, and Micro-structure 
Characterization (X-ray adsorption, including ex-
Electron microscopy (TEM, ELLS, etc.) 
Kinetics and Transport (Operando differential cell 
measurements of electrochemical kinetics and 
transport) 
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Sheet1

						Fabrication method		H2-O2				H2-air

								j@0.9 		Pmax  		j@0.8 		Pmax

								V(mA cm–2)		(W cm–2)		V (mA cm–2)		(W cm–2)

						GDE		31		0.78		N/A		N/A

						Sprayed 1:1 (4125) 		35		0.64		100		0.4







Sheet2

				Institution		Project Role

				IUPUI-Leading PI (J. Xie, Y. Liu, C. Li and G. Qing)		Project lead, management and cordination, construct ionomer/catalyst interface vai charge attraction,  MEA design, ink formulation, MEA testing and characterization

				UB- Co-PI(G. Wu, Shengwei Liu)		Design and develop advanced hierarchically porous carbon sphere (HPCS)@M-N-C catalysts for PGM-free cathodes in PEMFCs through controllable synthesis

				UTRC (JV. Yang)		Test, diagnose sub-scale MEAs (25-50 cm2)  and carry out the economic analysis






GDEvs.CCM

						Fabrication method		H2-O2				H2-air

								j@0.9 		Pmax  		j@0.8 		Pmax

								V(mA cm–2)		(W cm–2)		V (mA cm–2)		(W cm–2)

						GDE		31		0.78		N/A		N/A

						Sprayed 1:1 (4125) 		35		0.64		100		0.4







Collaboration

				Institution		Project Role

				IUPUI-Leading PI (J. Xie, Y. Liu, C. Li and G. Qing)		Project lead, management and cordination, construct ionomer/catalyst interface vai charge attraction,  MEA design, ink formulation, MEA testing and characterization

				UB- Co-PI(G. Wu, Shengwei Liu)		Design and develop advanced hierarchically porous carbon sphere (HPCS)@M-N-C catalysts for PGM-free cathodes in PEMFCs through controllable synthesis

				UTRC (JV. Yang)		Test, diagnose sub-scale MEAs (25-50 cm2)  and carry out the economic analysis





ElectroCat

		ElectroCat

								ElectroCat Consortium

								Institution		Capability 

								ANL 		Ultra-small Angle X-ray Scattering (USAXS), in situ and Operando Atomic, Nano-, and Micro-structure Characterization (X-ray adsorption, including ex-situ, in-situ in liquid/MEA) Electrode Microstructure Characterization and Simulation (X-ray Nano CT)

								ORNL		Electron microscopy (TEM, ELLS, etc.)

								NREL		Kinetics and Transport (Operando differential cell measurements of electrochemical kinetics and transport)







Remaining Challenges and Barriers 

• Increase activity of PGM-Free catalyst while 
improving stability. 

• Construct ideal ionomer/catalyst interface via charge 
attraction. 

• Functionalize PGM-Free catalyst with desired charge 
density while maintain high performance. 

• Increase MEA mass activity while improve power 
performance with air. 
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 Proposed Future Work 

• Synthesize core-shell structured Fe/Co-N-C catalyst 
with high activity and high stability. 

• Optimize the functionalization methods for 
controlling the surface charge of PGM-Free catalyst 
while maintain high activity and stability. 

• Develop machine sprayed CCM with both high mass 
activity and high-power performance. 

• Optimize ink formulation on ionomer/carbon ratio 
and different solvent systems. 
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 Summary 

• The developed core-shell structured Fe/Co-N-C catalyst 
exceeds year 1 milestone (33 mA/cm2 at 0.90 VIR-free in 
H2/O2, 133 mA/cm2 at 0.80 V, 480 mW/cm2, H2/Air). 

• Developed machine sprayed MEAs with the same 
performance of GDE. 

• Achieved simultaneously dispersion of ionomer and 
catalyst particles aiding by USAXS+cyro-TEM. 

• Rationally designed MEA from ink to solid porous layer 
using USAXS+cyro-TEM, and Hg porosimetry. 

• Developed new methods for PGM-Free catalyst 
functionalization. 
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Technical Accomplishment 

Future direction: Core-shell structured Fe/Co-N-C Catalysts 

0.6 mg cm-2; 0.5 M 
H2SO4 solution; 
25oC 

   

   
 

     
   

Co@Fe-N-C
Fe@Fe-N-C 
Fe@Co-N-C 
Co@Co-N-C
Co-N-C 

Fe@Fe-N-C Catalysts Co@Fe-N-C Catalysts 

Core-shell Co@Fe catalyst exhibited encouraging RDE activity E1/2=0.85 V and enhanced stability 
relative to Fe@Fe catalyst due to the more stable carbon structures 
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Technical Accomplishment 
Rational Design MEA: from ink to the solid porous catalyst layer 

Dispersion of catalyst and ionomer in H2O/n-PA System studying with Ultra Small 
Angle X-ray Diffraction (USAXS)+ Cyro-TEM 

H2O: nPA 
volume ratio 

Shape factor 
zone I 

Mean particle 
size zone I (nm) 

Shape factor 
zone II 

Mean particle 
size (nm) zone II 

10:1 4 2.62±0.10 3.124 490±50 
8:1 4 2.72±0.09 3.207 580±60 4= sphere 
4:1 4 2.67±0.15 3.291 610±40 3=disc 
2:1 4 2.62±0.18 3.335 560±39 
1:1 4 3.11±0.17 3.275 760±50 
1:2 4 3.60±0.27 3.289 630±60 
1:4 4 2.90±0.23 3.355 710±82 
1:8 4 2.74±0.38 3.265 650±50 

1:10 4 3.52±0.24 3.353 580±60 
1:16 4 3.82±0.22 3.32 610±69 

Systematic Study of Catalyst and ionomer dispersion in H2O/n-PA mixtures : 
 Disperse both catalyst and ionomer in a solvent system. 
 Morphology and geometry of catalyst, ionomer changing with different solvents. 
 Ionomer particle size increasing with n-PA content, better dispersed in low n-PA content. 
 Both catalyst and ionomer well dispersed at 70% H2O content. 
 Ionomer rods surrounding catalyst particle observed by cyro-TEM for 1:1 ratio solvent. 

32 



 
 

 
 
 

 
 

 

       

     
     

  

Technical Accomplishment 

Rational Design MEA: from ink to the solid porous catalyst layer 
Dispersion of catalyst and ionomer in H2O/i-PA System studying with Ultra Small 

Angle X-ray Diffraction (USAXS)+ Cyro-TEM 

Table 2 Particle size and shape information in different catalyst inks i-PA and water system 

H2O: iPA 
volume 

ratio 

Shape 
factor 
zone I 

Mean particle 
size zone I 

(nm) 

Size range 
Zone I 

(nm) 

Shape factor 
zone II 

Mean 
particle size 
(nm) zone II 

8:1 4 2.34±0.17 0.5-10 3.358 500±25 
6:1 3.275 3.68±0.45 0.5-11 3.421 530±46 
4:1 3.323 2.40±0.25 0.5-9 3.372 590±62 
2:1 3.518 4.03±0.43 0.5-11 3.362 580±57 
1:1 3.836 4.60±0.43 1-8 3.302 630±91 
1:2 4 3.88±0.27 1-30 3.461 520±52 
1:6 4 4.22±0.33 1-15 3.243 700±71 
1:10 4 4.18±0.21 1-30 3.364 580±89 
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EIS test under 5A @ 300-500 sccm (H2-O2) Pore Size Diameter (nm) 

iPa-water (1-1) iPa-water (1-4) iPa-water (4-1) 
Pore volume 0-20nm (mL/g) 0.103517 0.128467 0.107344 
Pore volume  0-200nm (mL/g) 0.391498 0.146661 0.198963 
Mesopore percentage (%) 0.790881084 0.53306461 0.649554205 
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Sheet1



																		iPa-water (1-1)		iPa-water (1-4)		iPa-water (4-1)

																Pore volume 0-20nm (mL/g)		0.103517		0.128467		0.107344

																Pore volume  0-200nm (mL/g)		0.391498		0.146661		0.198963

																Mesopore percentage (%)		0.7908810844		0.5330646099		0.6495542054
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