Durable MEAs for Heavy-Duty Fuel Cell Electric Trucks

PI: Vivek S. Murthi *Nikola Motor Company* May 30, 2020

Project ID: fc326

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

<u>Timeline</u>

- Project Start: Q3 2020
- Project End: Q3 2023

<u>Budget</u>

- Total project budget:
 \$2,125,000
 - Total Recipient Share: \$425,000
 - Total Federal Share:

\$1,700,000

- Total DOE funds spent*: \$0
 - * As of 05/30/2020

Barriers

- ✤ Durability
 - Improve stability of MEA for HD truck relevant operating conditions
- Performance
 - Increase catalyst while reducing ionomer poisoning effects to achieve high power density and higher efficiency
- Cost
 - Enable reduction in PGM catalyst loading and improve ionomer utilization

Partners

- Carnegie Mellon University
 - Modeling and characterization for MEA optimization
- Northeastern University
 - Durable IBAD catalysts
- ✤ Georgia Tech.
 - Durable alloy catalysts
- FC PAD
 - Conventional electrode fabrication, MEA component ASTs, post-mortem characterization

Relevance: Overcoming Durability and Cost Targets

OBJECTIVE: Develop novel MEA architecture to eliminate the formation of desiccation structures during MEA fabrication and fuel cell operation

^{1.} R.T. White et al. Journal of Power Sources, 350, 94-102 2017 *(0.6 V for 30 s, to an upper potential of 1.4 V for 60 s in a square wave pattern).

2. Y. Singh et al. Journal of The Electrochemical Society, 164 (13) F1331-F1341, 2017

Relevance: Overcoming Durability and Cost Targets

Motivation & Current Shortcomings

- Current catalyst layer (CL) fabrication techniques have several shortcomings including
 - The formation of cracks during <u>fabrication</u>
 - The formation of cracks during operation
 - Overuse of ionomer
 - a) This reduces ORR activity
 - b) This increases $\mathbf{O_2}$ gas transport resistance
 - c) Increases CL hydrophilicity, leading to **flooding** and greater **catalyst metal dissolution**

Proposed mechanism for catalyst poisoning via ionomer adsorption.²

Excessive ionomer can lead to agglomerates and poor durability.⁴

Adsorbed ionomer can increase oxygen gas transport resistance.³

- 1. Kumaraguru S. General Motors FC-PAD Tech Team, 2018
- 2. K. Kodama et al. ACS Catalysis, 8, 694-700, **2018**
- 3. A. Kongkanand and Mark Mathias, J. Phys. Chem. Lett., 7, 1127–1137 2016
- 4. Journal of The Electrochemical Society, 165 (14) F1254-F1263, 2018

Relevance: Targets and Status

Characteristics	Target	Conditions								
Operation hours	≥ 25,000 hours	HDT Drive cycle ^[1]								
Platinum Group metal Loading	0.3 mg/cm ² (total)	DOE Advanced Truck Technologies: Technical Targets for Hydrogen-Fueled Long-Haul Tractor-Trailer Trucks (released 10/31/2019)								
Performance @0.8V	> 350mA/cm ² (interim)>500 mA/cm2 (end of project)	DOE Technical Target(2016) Table 3.4.5, Table P6								
Performance @ rated power	> 700 mW/cm ² at HD rated power at 80C ^[2] (Full-size MEA)	- DOE Technical Target(2016) Table P6								
Loss in catalytic mass activity	< 25 % ^[3]	DOE Technical Target(2016) Table 3.4.7, Table P1								
Loss in rated power	< 10 %	Heavy-duty Drive-Cycle								

- **1.** Not relevant for HD; however used as initial target in the absence of HD specific ASTs.
- 2. Analysis of Fuel Cells for Trucks (TA024), R. Vijayagopal (ANL), 2019 DOE Hydrogen and vehicle technologies AMR

3. Not necessarily relevant for HD; however used as initial target in the absence of validated HD specific ASTs. Nikola HD truck durability targets are more aggressive.

Approach: Project Workflow & Collaborations

Project Participants and Roles

Institution; Personnel	Key Role(s)								
Nikola Motor Company (Nikola); • Dr. Vivek Murthi (PI) • Dr. John Slack (Lead Project Scientist)	 Benchmarking MEA components Fundamental MEA architecture design, fabrication, optimization, testing and analysis MEA development and scale-up strategies and supplier collaboration Single-cell testing and MEA validation Program Management 								
Georgia Institute of Tech. (Georgia Tech.); Prof. Younan Xia	 Durable supported catalyst development and sub-scale testing Catalyst physical and electrochemical characterization 								
Northeastern University (NEU); Prof. Sanjeev Mukerjee	 Catalyst development based on Ion Beam Assisted Deposition (IBAD) on commercial and tailored carbon supports; Fundamental studies to elucidate electrocatalyst structure 								
Carnegie Mellon University (CMU); Prof. Shawn Litster	 Catalyst layer nano-structure and MEA micro-structure 3D imaging and analysis Catalyst aggregate scale modelling O₂ and proton (H⁺) transport modelling to provide for MEA optimization 								
FC-PAD National Laboratory Consortium Members	 Advanced MEA fabrication, sub-scale performance testing and evaluation (NREL, LANL) Component Diagnostics and Characterization (ORNL) Operando Evaluation— Accelerated Stress Testing (AST) of MEA components and new AST protocol development for HD FCET (LANL) 								

Approach: Collaborative Project Team

- Northeastern: <u>Dual IBAD</u> technique to produce <u>durable</u> catalyst powders
- Georgia Tech: Synthesize supported <u>durable</u> <u>cuboctahedral PtCo</u> catalyst
- Nikola: Novel durable CL/MEA structure (Nikola IP) based on methods similar to nanoencapsulation, to form layered structures of catalyst powders and ionomer
- CMU: Create <u>CL transport models</u> and recommend MEA formulation/optimization based on feedback from X-ray computed tomography and pFIB-SEM imaging

Approach: Durable Catalyst Development

Pt-M (M = Fe, Co, and Ni) Alloy Catalysts – Georgia Tech.:

□ Colloidal synthesis of Pt–M alloyed nanocrystals

- Prior result: 4-nm Pt-Co truncated octahedra
- Project Focus:
 - 1. Controlled compositions, shapes, and sizes
 - 2. <u>Continuous</u> and <u>Scalable</u> production

AST Cycles	Mass Activity (A/mgPt at 0.9 V vs RHE)										
-	GT PtCo	Umicore PtCo									
BOL	0.294	0.186									
BOL +	0.384	0.394									
Recovery											
30000	0.224	0.123									
30000 + Recovery	0.335	0.164									

Dual-Ion-Beam-Assisted catalysts – Northeastern Univ.:

- □ Line of sight technology referred as dual-ion-beamassisted deposition (IBAD) technique
 - Project Focus:
 - 1. Pt-M alloy
 - 2. Ti doped interlayer to improve stability and conductivity, both deposited using dual IBAD technique
 - 3. graphitic and corrosion resistant carbons

Schematic of dual IBAD for creating ultra-thin amorphous coating of mono or mixed metal deposits.

Approach: MEA Development

- The goal of this project is to:
 - Reduce/eliminate crack formation during deposition/operation → improve durability
 - Improve catalyst utilization → Use less PGM
 - More effectively orient ionomer, reducing SO₃⁻ poisoning → better mass transport and ORR activity
 - Accurately control pore-size distribution -> better water management and mass transport
- Technology Improvement Targets:
 - At high RH: Reduction in flooding from "macro" pores
 - <u>At low RH:</u> Improvement in ionic conductivity from water condensation in primary pores

MEA Design Approach

Modeling Approach

- Provide suggested optimal sphere size and ionomer thickness to maximize oxygen transport while maintaining the minimum ionic conductivity required to avoid increases in ohmic overpotential
- Provide insights about ion conduction in ionomer-free domains
- Model Pt dissolution and migration in the Nikola CL structure and compare this to SOA MEAs.
- Determine the impact of pore diameter and catalyst loading on proton conduction and oxygen diffusion, and the impact of internal catalyst morphology on stabilizing Pt particle size with voltage cycling
- Provide baseline membrane-Pt-band data and compare this to Nikola MEAs

Image-based catalyst performance and durability modeling

Milestones and Go/No-Go Decisions

Commercial catalyst Experimental catalyst, year 1

Experimental catalyst, year 2/3

	Tasks	Budget year 1									Budget year 2												Budget year 3												
		1	2	3	4	5	6	78	39	10) 11	l 12	2 1	2	3	4 5	56	57	8	9	10	11	12	1	2	3	4	56	6	78	8	9 1	LO 1	1 12	2
NIKOL	A																																		
Catalys	t Down-selection	٦	Pt Dowi	or f n-se	tCo lectio	on							Sup	port Dow	typ m-se	e/stru electic	ctur n	e												Co	omp	oone	nt		
Membr	ane Down-selection			D	Mer own	nbra sele	ne ction																							Dov	vn-s	selec	tion		
Nikola (CL Development															0	L Sti ptim	ructu nizatio	re on													s fe	cale- easibi	up ility	
MEA Fa	brication											i Go,	/ No-	go																-					
	Commercial Cat.(Nikola/NL)										50c	m²	F	ulls	ize							G	o/ P		0										
MEA Test	Geo. Tec. (Nikola / NL)										50cm	12			(Cataly sele	st Do ectio	own- In			50cm	1 ²		чо-е	F	ull-siz	е					Full-s	ize		*
	NEU (Nikola / NL)									1					50)cm ²	1							Performance					е	Durability test				bility st	
Georg	ia Tech.																		//								test	t							
Cubocta	ahedral PtCo/C						1		7	-									1																
Scale-u	p & catalyst stabilization					Cha tior	aract 1 & d	eriza own	с - г	Catal Deliv	lyst /erv		1							1			-	~											*
North	eastern Univ.					S	electi	ion			ciy		1				С	ataly	t C	ubo	tahe	edral		Cat	alyst								An c	alysi ataly	s of new st and
IBAD Ca	atalyst Pt/M-M/C								t								D	elive	y F	PtCo	scale	e-up		Del	ivery							- 0	:omp	oner	it level As
Scale-u	p & catalyst stabilization							Ch tio	narac on & d	teri: dow	za m-	Cat Del	talyst liverv					*	(1	1		*	7											
Carne	gie Mellon Univ.							S	selec	tion			y						I	BAD sca	cata le-u	lyst p											A	naly: cata	sis of new lyst and ont level 7
Modeli	ng of Nikola CL						1											1															com		
Analysi	s of catalyst, CL and MEA					Mc N	del <mark>ir</mark> ikola	ng of CL					×			Mo Niko	delii la CL	ng of , ME/	4				*										٧	erifi Mo	cation of deling

Milestones Summary: Budget Period 1

Task Number	Task or Subtask	Milestone Type/number: Milestone Description	Anticipated Month (from Start of the Project)					
Subtask 1.1.1	MEA component down-selection	• M 1.1.1: down-select commercial catalyst • M1.1.2: down-select membrane	M6, M9					
Subtask 1.1.2	Nikola CL optimization and fabrication	 M 1.1.3: Nikola CL optimization with commercial catalyst M 1.1.4 : MEA Benchmarking Baseline Definition 	M12					
Task 1.2	Development of cuboctahedral PtCo/C catalyst for Nikola CL	 M 1.2.1: Metal deposition optimization for cuboctahedral PtCo/C M 1.2.3: fabrication and delivery of 6g of catalyst 	M6, M9					
Task 1.3	Development of IBAD Pt/M-M/C catalyst for Nikola CL	 M 1.3.1: Metal deposition optimization for IBAD Pt/M-M/C Milestone 1.3.3: Perform IBAD catalyst degradation analysis and delivery of 6g of catalyst 	M8, M12					
Task 1.4	Modeling and analysis of Nikola CL	 M 1.4.1 Modeling of MEA CL M1.4.2: structural analysis of Nikola CL and MEA 	M6, M12					
Task 1	Nikola CL MEA fabrication and performance (\leq 50cm ² MEA active area)	 Go/No-Go 1: Nikola CL MEAs will be fabricated with commercial catalyst MEA -Performance ≥ 350 mA/cm² at 0.8V, 200 kPa_{ab} , 80 °C , 0.3 mg/cm² PGM total 	M12					

Milestones Summary: Budget Period 2

Task Number	Task or Subtask	Milestone Type/number: Milestone Description	Anticipated Date (Months from Start of the Project)				
Task 2.1	Nikola CL MEA fabrication using new catalyst	 M 2.1.7: Nikola CL MEA performance and durability (full -size) using commercial catalysts at a loading of 0.2~0.4 mgPt/cm² 	M15				
Task 2.2	Synthesis of PtCo catalyst on durable carbon supports	 M 2.2.2: Fabrication of cuboctahedral PtCo/durable carbon and delivery M 2.2.3: Scale-up if down-selected 	M17 (M20)				
Task 2.3	IBAD Pt/M-M/ /C optimization and fabrication for Nikola CL	 M 2.3.2: Fabrication of IBAD Pt/M-M/ on durable carbon and delivery M 2.3.3: Scale-up of IBAD Pt/M-M if down- selected 	M17 (M20)				
Task 2.4	Modeling and analysis of Nikola CL and MEA	 M 2.4.1: Refine modeling of Nikola CL and MEA through sub-unit structure parameter confirmation and Electrode-scale modeling Milestone 2.4.2: Analysis of Nikola CL & MEA using Nano-CT imaging of ionomer distribution Oxygen transport in CL. Etc., 	M18, M24				
Task 2	Nikola CL MEA evaluation with Durable catalyst	 <u>Go/No-Go 2</u>: Nikola CL MEA using down-selected experimental catalyst with a durable carbon. MEA -Performance ≥ 350 mA/cm² at 0.8V, 200 kPa_{ab}, 80 °C, 0.3 mg/cm² PGM total ≤25% drop in rated power after load cycling (DOE catalyst ASTs) 	M24				

Conclusions and Acknowledgements

- 1. Develop a CL architecture to maximize oxygen transport with the minimum ionomer necessary to maintain the percolation limit of protons
- 2. Compare new CL structure to SOA MEAs to
 - a) Decrease SO₃ adsorption and improve related catalyst activities & electrochemically active surface areas
 - b) Reduce Crack formation after a protocol designed to accelerate this degradation mode
 - c) Increase Lifetime efficiencies (BOL, average lifetime, and EOL) at nominal operating voltages
- 3. CMU and ORNL together will provide data to help Nikola correlate structure with performance and durability
- 4. GA Tech and NEU will develop catalysts that Nikola will compare to commercial catalysts. The catalyst which provides highest BOL, average lifetime, and EOL efficiencies at nominal operating voltage will be down-selected.

Acknowledgements

- EERE Award: DE-EE0008820; FCTO Greg Kleen, Dimitrios Papageorgopoulos, Elliot Padgett
- Collaborators Prof. Mukerjee, Prof. Litster, Prof. Xia
- Nikola Team Dr. John Slack, Dr. Jason Lee, Dr. Andrew Baker, Dr. Bahareh Tavakoli, Christian Appel, Jesse Schneider

