

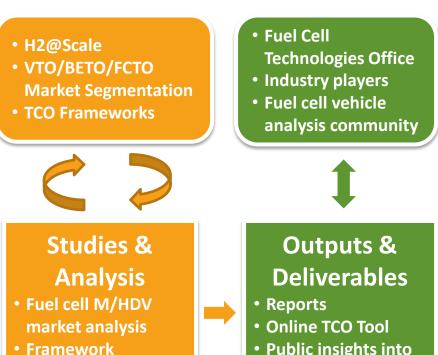
Market Segmentation Analysis of Medium and Heavy Duty Trucks with a Fuel Cell Emphasis

Chad Hunter, Michael Penev, Evan Reznicek National Renewable Energy Laboratory May 31, 2020

DOE Hydrogen and Fuel Cells Program 2020 Annual Merit Review and Peer Evaluation Meeting

Project ID SA169

This presentation does not contain any proprietary, confidential, or otherwise restricted information.


Overview: Fuel Cell M/HD Vehicle Market Segmentation

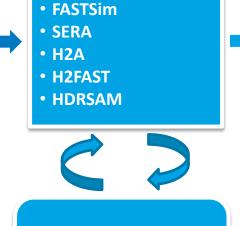
Timeline	Barriers (4.5)
Start: September, 2017	A. Future Market Behavior
End: September, 2020	 Assessing competitiveness of fuel cell M/HDVs C. Inconsistent Data, Assumptions & Guidelines
80% complete	 Consistent modeling methodology using established DOE cost/price and performance targets
	 D. Insufficient Suite of Models and Tools Expand spatial and temporal analysis tools to M/HDV sector
Budget	Partners
Total Project Funding: \$450k	Modeling (FY18) University of South Carolina - Dr. Yuche Chen
• FY18: \$250k	External Peer Reviewers (alphabetical)
• FY19: \$100k	Argonne National Laboratory, Bosch, California Air
• FY20: \$100k	Resources Board (CARB), Center for
Total DOE funds received to date: \$350k	Transportation and the Environment (CTE), Cummins, Eaton, Energy Independence Now (EIN), FedEx, Toyota, DOE Vehicle Technologies Office

Relevance (1/2): FCTO Systems Analysis Framework

Fuel Cell M/HDV Market Segmentation **Integrates System Analysis Framework:**

- Leveraging and expanding existing systems analysis models
- Systems analysis approach using DOE cost and performance targets

 Public insights into market potential


Acronyms

implementation

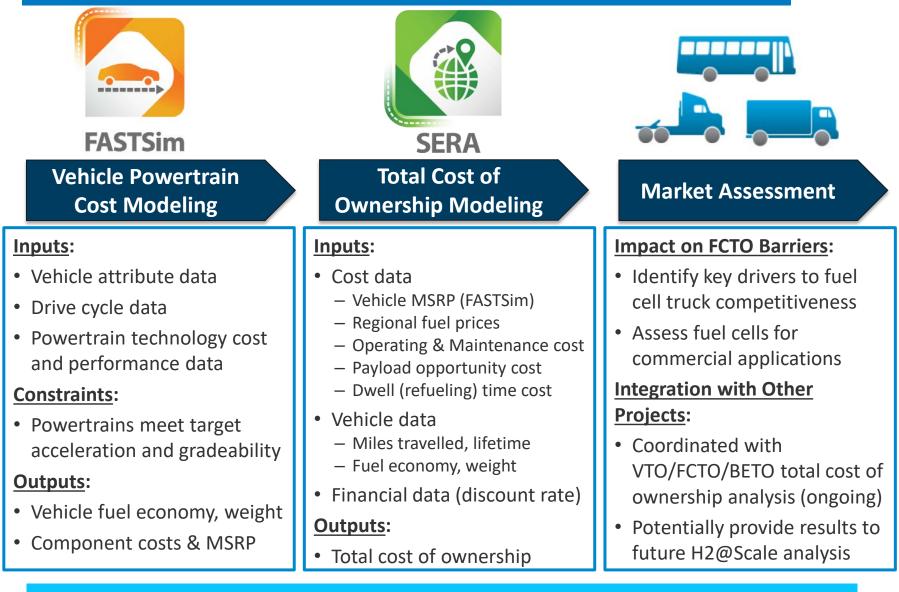
FASTSim: Future Automotive Systems Technology Simulator H2A: Hydrogen Analysis H2FAST: Hydrogen Financial Analysis Scenario Tool M/HDV: Medium/Heavy-Duty Vehicles SERA: Scenario Evaluation and Regionalization Analysis TCO: Total Cost of Ownership

Analysis Framework

- Cost estimation (TCO)
- Stock modeling
- Energy resource utilization
- H₂ infrastructure financial analysis

Models & Tools

 FCTO Program Targets VTO Program Targets


Relevance (2/2): FCEV Market Segmentation Objectives

Project Objectives:

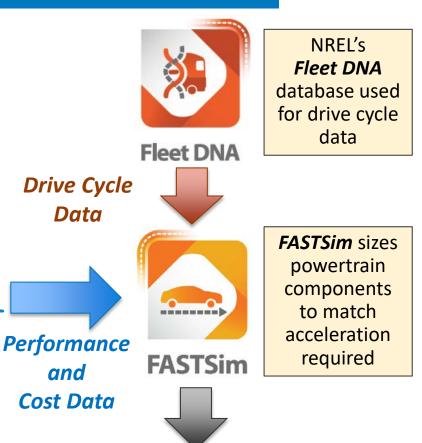
 To provide industry, government, and non-government stakeholders a broad scoping assessment of medium/heavy duty fuel cell vehicle market opportunities across different classes, vocations, regions, and time

2. Assess technical *barriers and opportunities* for improvement in the medium/heavy duty fuel cell vehicle technology space to guide DOE *investment* in advanced technologies (MYRDD Milestone 1.16, 1.17)

Approach (1/3): Analysis Approach Overview

Regional TCO analyzed using established models and OEM specifications

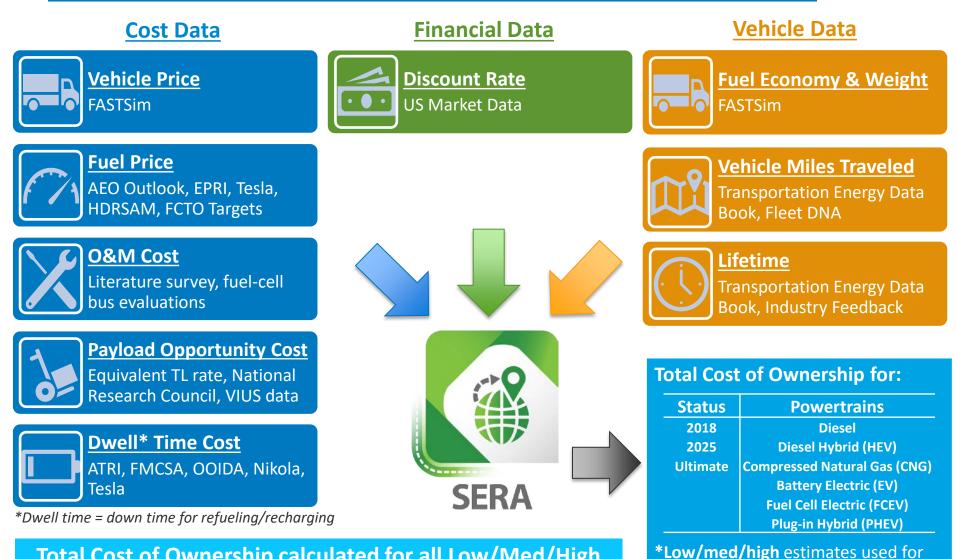
Approach (2/3): FASTSim used for powertrain optimization


Current and Future (2025, Ultimate)

Performance and Cost Data¹

Target year	2018	2025	Ultimate
Batteries			
Battery pack mass [kg/kWh]	4.70	4.03	2.50
HEV battery pack cost [2016\$/kWh]	389	275	80
PHEV battery pack cost [2016\$/kWh]	389	275	80
PEV battery pack cost [2016\$/kWh]	389	275	80
Power Electronics (PE)			
Power electronics with boost & motor [2016\$/kW]	53	46	26
FCEV			
Fuel cell specific power [kW/kg]	0.96	1.02	1.02
Fuel cell cost [2016\$/kW]	(160-200) 181	113	60
Fuel cell system peak efficiency [% LHV]	63.6%	66%	72%
Storage specific mass [kWh-LHV/kg]	1.48	1.80	2.20
Storage cost [2016\$/kWh-LHV]	15.7	11.4	8.0
CNG			
Engine efficency improvement (absolute)	0%	0%	0%
Engine cost [\$/kW]	55	55	55
Fuel storage cost [\$/usable kWh NG-LHV]	7.47	4.70	3.82
Fuel storage specific mass [kWh/kg]	4.21	4.47	5.10
Conventional			
Engine specific power [kW/kg]	0.27	0.27	0.27
Engine fixed cost [\$]	5000	5000	5000
Engine power cost [\$/kW]	50	50	50
Engine efficiency improvement (absolute)	0%	2%	10%
Fuel storage specific mass [kWh/kg]	9.88	9.88	9.88

FASTSim models vehicle fuel economy, weight, and cost for each year and powertrain for direct comparison


1. Data source references are provided in the back-up slides

Results (by tech status and powertrain):

- Output: Fuel economy, weight, costs, MSRP
- Status: Current (2018), Tech Targets (2025, ultimate)
- Powertrains: Diesel, compressed natural gas (CNG), hybrid-electric (HEV), plug-in hybrid electric (PHEV), battery electric (BEV), fuel cell electric (FCEV)

Approach (3/3): Total cost of ownership modeling in SERA

Total Cost of Ownership calculated for all Low/Med/High estimates of all input vehicle data and cost data

Emissions benefits were not included in TCO framework but could be added in future analyses

sensitivity analysis

Accomplishments and Progress (1/13): FASTSim updates from 2019 AMR at a glance

FASTSim Vehicle Modeling Updates

- Adjusted the interim analysis year from 2020 to 2025 1.
- 2. Improved vehicle component cost data
 - 1. Leveraged the latest VTO-Target Setting work (Lustbader, et al., 2019) to update the current battery pack and electric machine costs for heavy-duty vehicle applications
 - 2. Improved CNG tank cost estimates based on recent FCTO project by SA Inc.
 - 3. Improved the hydrogen tank cost based on the recent FCTO Program Record (#19008)
- Improved vehicle performance data 3.
 - 1. Updated baseline diesel vehicle projections based on the latest VTO-Target Setting work (Lustbader et al., 2019) and FCTO Program Record (#19006)
 - 2. Updated fuel cell system peak efficiency and specific power based on recent FCTO Program Record (#19006)
- Added FASTSim runs with regulatory drive cycles for 4. easier fuel economy comparisons with other projects and public data
- 5. Completed preliminary FASTSim runs for Class 8 drayage, Class 8 transit bus, Class 8 refuse, Class 6 parcel delivery, Class 6 box truck, and Class 5 van

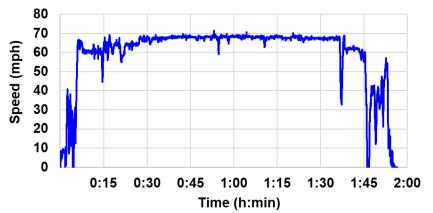
70	Class	Vocation
	Class 4	Parcel Delivery
	Class 5	Van, Basic Enclosed
	Class 6	Box Truck
FY19-20	Class 6	Parcel Delivery
T X	Class 8	Transit Bus
	Class 8	Refuse, Garbage Pickup
	Class 8	Drayage
N7-0T 1	Class 8	Short Haul
Ĭ	Class 8	Long Haul

Vocations with large share of fuel consumption in each Class per VIUS

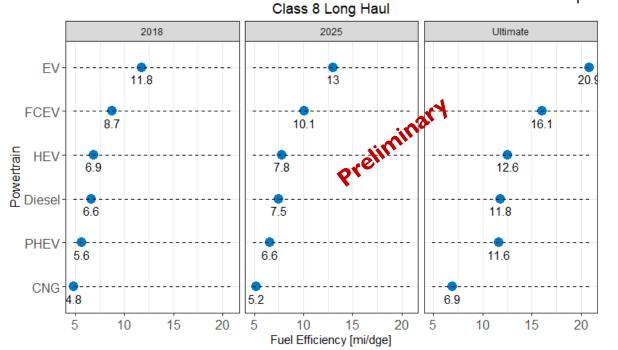
This project incorporates the latest work from multiple other DOE projects and peerreviewed papers

Accomplishments and Progress (2/13): SERA TCO updates from 2019 AMR at a glance

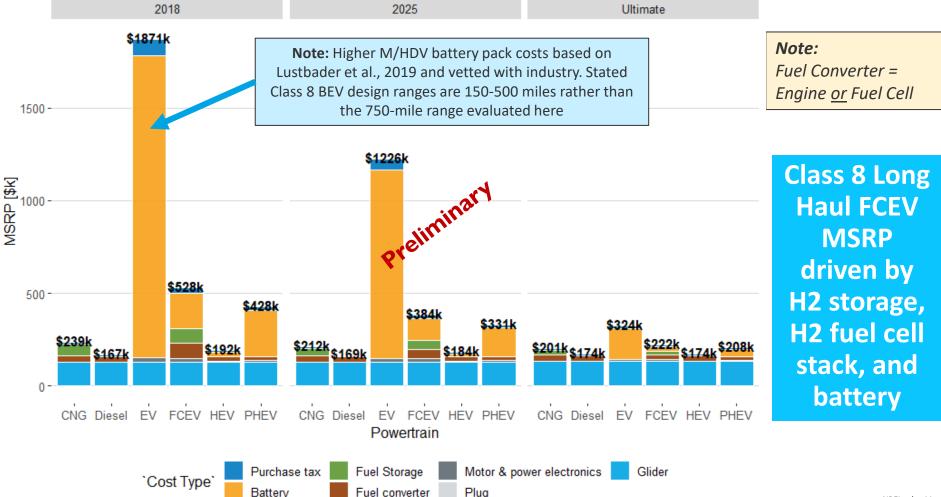
SERA TCO Modeling Updates


- 1. Updated CNG fuel prices based on discussion with AFDC data with DOE VTO Clean Cities team
- 2. Updated HEV O&M costs to better match conventional vehicles and observed data
- 3. Improved dwell time calculations for PHEV powertrains
- 4. Updated payload opportunity cost calculations to reflect potential incurred costs rather than lost revenue
- 5. Added General Operations costs (insurance, permits/licenses, tolls, tires) to allow comparison of TCO across other external studies
- 6. Added 2,000 lb Federal weight limit exemption for advanced powertrain trucks (up to 82,000 lbs)

Numerous discussions with industry stakeholders, research institutions, and the DOE have improved the modeling data and assumptions

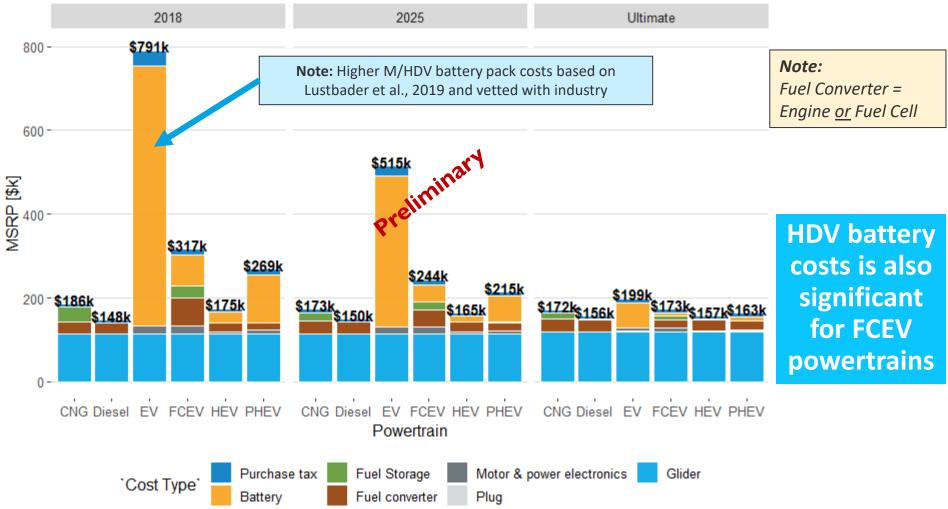

Accomplishments and Progress (3/13): Class 8 Long Haul (750 mile) Vehicle Fuel Economy

Class 8 Tractor Drive Cycle


- Updated baseline diesel vehicle projections based on the latest VTO-Target Setting work (Lustbader et al., 2019) and FCTO Program Record (#19006)
- Updated fuel cell system peak efficiency and specific power based on recent FCTO Program Record (#19006)
 - Resulting fuel economy values are shown below for the Fleet DNA real-world drive-cycle with these updated data

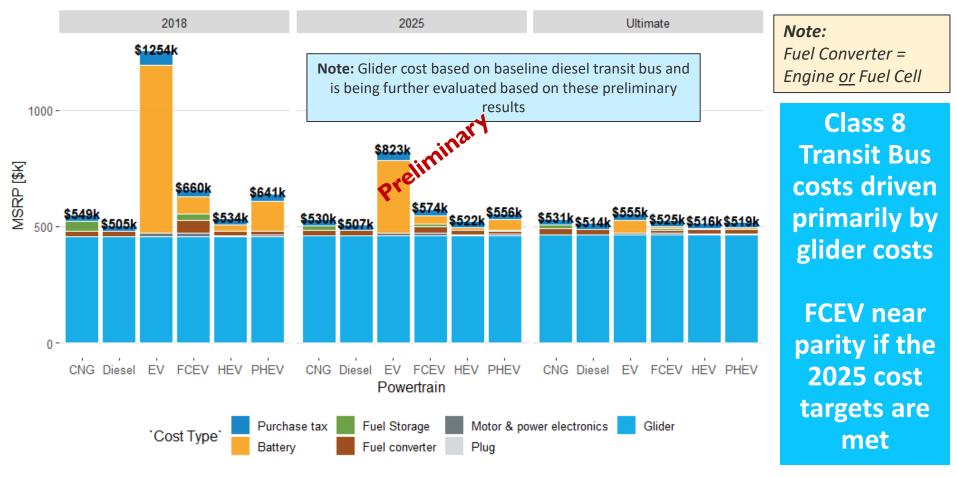
Updated fuel economy estimates better match future diesel truck projections

Accomplishments and Progress (4/13): Class 8 Long Haul (750 mile) Vehicle MSRP Modeling

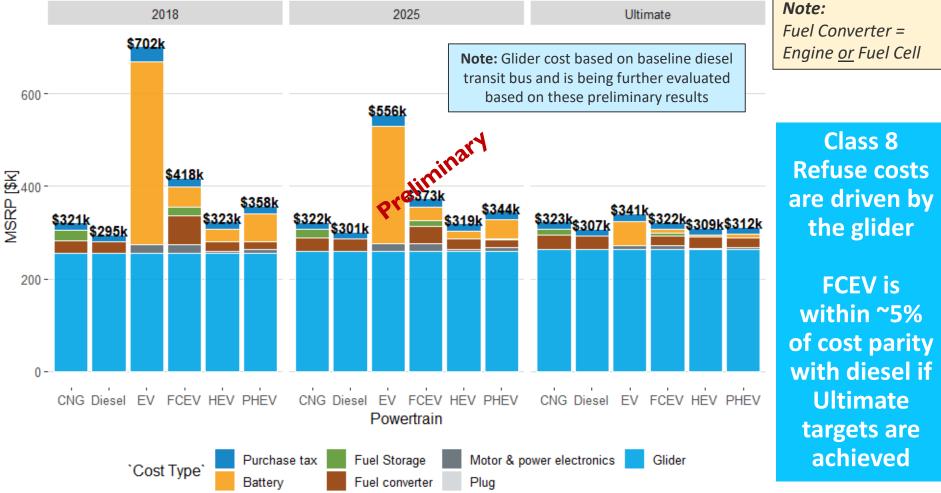

- Powertrain components sized to meet acceleration needs (0-60 mph, ~60 sec)
- Class 8 Long Haul required range of 750 miles between refueling/recharging
- Vehicle cost/MSRP driven by H₂ storage, H₂ fuel cell stack, and battery

FASTSin

Accomplishments and Progress (5/13): Class 8 Drayage (300 mile) Vehicle MSRP Modeling


- Powertrain components sized to meet acceleration needs
- Class 8 Drayage required range of 300 miles between refueling/recharging

FASTSin


Accomplishments and Progress (6/13): Class 8 Transit Bus (300 mile) Vehicle MSRP Modeling

- Powertrain components sized to meet acceleration needs
- Class 8 Transit Bus required range of 300 miles between refueling/recharging
- Vehicle cost/MSRP driven by the glider based on limited diesel bus data

Accomplishments and Progress (7/13): Class 8 Refuse (200 mile) Vehicle MSRP Modeling

- Powertrain components sized to meet acceleration needs (0-60 mph, ~60 sec)
- Class 8 Long Haul required range of 750 miles between refueling/recharging
- Vehicle cost/MSRP driven by H₂ storage, H₂ fuel cell stack, and battery



FASTSim

Accomplishments and Progress (8/13): Total Cost of Ownership Scenario Definition

Operating Shift (Single vs Multi)

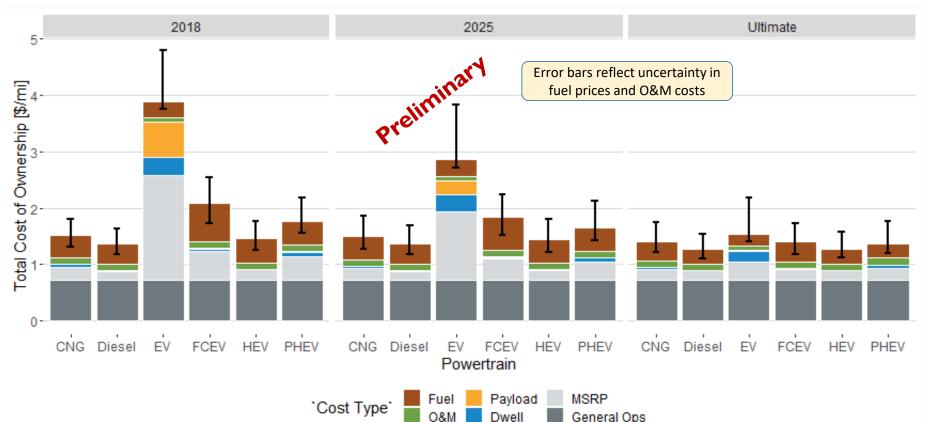
Scenario regimes were defined in the AMR 2019 slides. Regimes validated since then with conversations with industry

Accomplishments and Progress (9/13): Updated the approach to valuing lost payload

Lost payload* value based on minimum cost of fleet's four options:

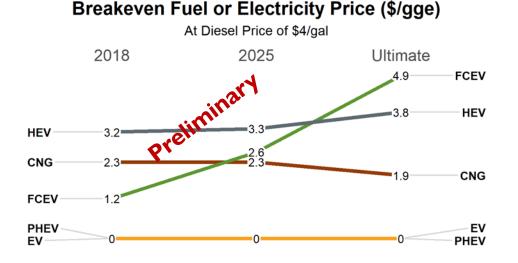
Buy	Rent	Outsource	Nothing
 Quantify as if fleet would <u>buy</u> a similar truck to meet the needs of the fleet Compute levelized cost to purchase additional trucks for the fleet E.g. if 10 diesel trucks are needed, and an EV truck has 10% less payload, the fleet would need to buy 11 trucks total 	 Quantify as if fleet would <u>rent</u> a similar truck to meet the needs of the fleet Mathematically similar to Buy option but there are differences in capital depreciation, overhead charges, and taxes 	 Buying cargo capacity services on the TL/LTL market TL rates for marginal cargo capacity are significantly higher than the levelized cost of ownership of a fully- loaded truck 	 Do nothing and potentially not meet the needs of the fleet/business Immediate revenue losses, reduced customer lifetime
Data: Levelized TCO Cost: ~\$0.03/klb-mi	Rental Firm Survey ~\$0.04/klb-mi	LTL Rate Survey ~0.3 \$/klb-mi	Assumed Infeasible >> ~\$0.3/klb-mi
Approach used in these 2020 AMR Slides		Approach used in the 2019 AMR Slides	

*Only applies for lost payload above 2,000lb federal exemption, incremental fuel economy impact accounted for within the 2,000lb Federal limit

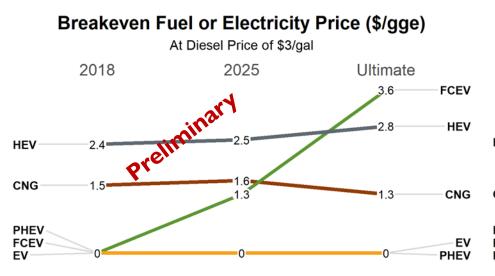

Accomplishments and Progress (10/13): Total Cost of Ownership Scenario Analysis

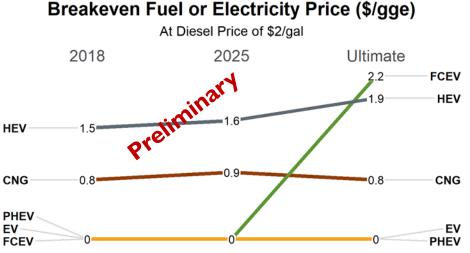
SERA

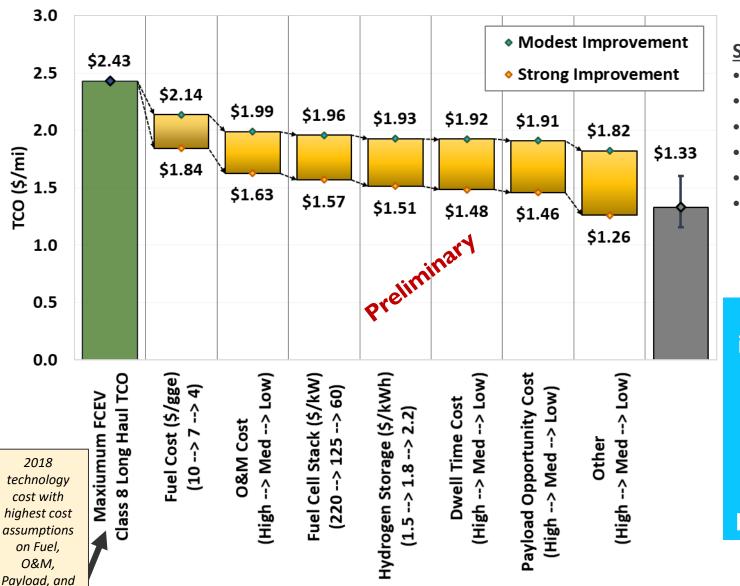
Scenario Parameters


- Class 8 Long Haul in Mid-Atlantic Region
- 100,000 mi/yr, 10 year life
- Payload Cost = High, Dwell Cost = High
- Fuel, O&M Costs = Mid
- Discount Rate = 7%

FCET costs driven by fuel (\$7/gge H2 in this scenario), while payload and dwell costs are insignificant for FCEV




Accomplishments and Progress (11/13): Total Cost of Ownership Scenario Analysis



Updated since 2019 AMR Slides. In this scenario, the EERE Ultimate targets must be achieved for FCEVs to achieve TCO parity with diesel

Accomplishments and Progress (12/13): Updated TCO waterfall chart with latest data

Dwell Costs

Scenario Parameters

- Class 8 Long Haul
- Mid Atlantic Region
- 2018 Technology
- 100,000 mi/yr
- 10-year life
- Discount Rate = 7%

Strong improvements in just hydrogen fuel cost and O&M costs allows the FCEV to achieve cost parity with diesel

Accomplishments and Progress (13/13) Responses to Reviewers' Comments

Fuel Cell Stack Costs: The text suggests that the values are from DOE targets, but the peak fuel cell system efficiency shown for 2020 and the ultimate efficiency do not match the DOE Fuel Cell Technologies Office (FCTO) targets for fuel cell system peak efficiency.

This has been updated based on the 2019 FCTO Program Record for Hydrogen Class 8 Long Haul Truck Targets (#19006).

Fuel and Refueling Infrastructure Costs: It is recommended the team reach out to infrastructure providers to better understand these costs.

Explicit, detailed infrastructure analysis is outside the scope of this current project and being completed by other DOE FCTO Projects.

Industry Peer Reviewers: An expanded list of fleet users in the collaborators and reviewers could be beneficial

The team has engaged with additional fleet stakeholders (e.g. NACFE) and DOE collaborators investigating M/HD TCO aspects since the 2019 AMR. Those conversations have informed the development of this project, but they have not officially reviewed the project/report and thus are not listed in this deck.

Online Tool: The project team is strongly, strongly encouraged to publish a version of this model that any stakeholder can use.

While an online tool was originally being developed, the team is working with other national labs and the DOE Vehicles Technology Office to support a more wholistic TCO tool for all on-road vehicles. It is expected that this tool will be publicly available near the end of 2020.

Collaboration and Coordination

DOE	National Labs	5	
 Fuel Cell Technologies Office Vehicle Technologies Office Jake Ward Madhur Boloor Clean Cities Team Dennis Smith Mark Smith Linda Bluestein 	 ANL Ram Vijayage Amgad Elgov Aymeric Rou NREL Jason Lustba Matteo Mura Mike Lamme 	vainy sseau der atori	
Other Peer Reviewers Bosch California Air Resources Board (CAL Center for Transportation and the L Cummins	The mix of industry, s agency, and non-pro organizations has be very helpful in definin	ofit een	
Eaton Energy Independence Now (EIN) FedEx SA, Inc. Toyota		scenarios and visualizations that are most useful to see	e th

Remaining Challenges and Barriers

Data Certainty

- There is limited public, robust data on many of the total cost of ownership parameters
- Large uncertainty ranges impacts the ability to segment the M/HD market as multiple powertrain technologies can compete under different conditions

Modeling Actual Vehicle Ownership Behavior

 Total cost of ownership over the lifetime of the vehicle may not represent how industry owns vehicles. For example, Class 8
 Long Haul first owners typically own them for ~2-4 years before selling in secondary market. Resale value of Battery and Fuel
 Cell powertrains is unknown and difficult to estimate

Future Work and Potential Work

FY20 Project Plan

FASTSim Cost Modeling

 Complete modeling for remaining vehicles

SERA TCO Modeling

- Integrate remaining vehicle FASTSim outputs into SERA
- Complete TCO sensitivity and scenario analysis

Knowledge Transfer

- Obtain feedback on Online Tool
- Publish NREL report on FY18 vehicles
- Publish NREL report for FY19 vehicles

FASTSim Cost Modeling (FY20)

 Complete FASTSim vehicle modeling for remaining vehicles in this study (Class 4 Delivery and Class 8 Short/Long Haul completed)

SERA TCO Modeling (FY20)

- Integrate FASTSim outputs for remaining FY20 vehicles into SERA for TCO analysis
- Complete TCO analysis including Sensitivity and Scenario analysis for all vehicles/vocations

Knowledge Transfer (FY20)

- Publish the NREL Report on Class 4 Parcel Delivery and Class 8 Short/Long Haul
- Publish NREL Report on remaining vehicles/vocations

Potential Future Scope (FY20+)

- Integrate with H2@Scale through temporal and spatial supply, demand, and storage requirements
- Integrate TCO data into ADOPT-HD vehicle choice model
- Evaluate other vehicle segments (rail, marine)

Any proposed future work is subject to change based on funding levels

Technology Transfer Activities

- FASTSim is currently available (LDV) and the updated version (with M/HDV capabilities) will be made available after project completion
 - <u>https://www.nrel.gov/transportation/fastsim.html</u>
- Licensing of *SERA* model is being considered. Please inquire if you are interested in using it.
- Two NREL Reports will be published detailed the modeling methods, assumptions, and results

Summary

Relevance

• Completed analysis of program performance and cost status for the potential use of fuel cells for commercial applications and to help enable them (MYRDD Milestone 1.16, 1.17)

Approach

- FASTSim for vehicle optimization to obtain vehicle cost, fuel economy, and weight
- SERA TCO modeling direct costs (MSRP, fuel, O&M) and indirect costs (payload, dwell)

Accomplishments and Progress since FY19

- Improved vehicle component cost data (battery costs, electric machine costs, CNG tank costs, H2 tank costs) based on the most recent data available to improve the integrity of the results
- Improved vehicle performance data (baseline diesel vehicle improvements, fuel cell system peak efficiencies, fuel cell specific power) based on the most recent data available
- Completed preliminary FASTSim runs for Class 8 drayage, Class 8 transit bus, Class 8 refuse, Class 6 parcel delivery, Class 6 box truck, and Class 5 van
- Updated relevant TCO data (CNG fuel prices, HEV O&M costs, general operations costs) and TCO calculations (dwell time, payload valuation) to more accurately estimate the TCO of advanced powertrains
- Coordinated and collaborated with stakeholders across industry, DOE, non-profits, and the national labs

FY20 Ongoing and Planned Work

- Publish NREL Report on Class 4 Parcel Delivery and Class 8 Long/Short Haul vehicles
- Complete vehicle modeling and TCO scenario/sensitivity analysis on remaining M/HD vehicles (Class 8 drayage, Class 8 transit bus, Class 8 refuse, Class 6 parcel delivery, Class 6 box truck, and Class 5 van)
- Publish NREL Report on Class 8 drayage, Class 8 transit bus, Class 8 refuse, Class 6 parcel delivery, Class 6 box truck, and Class 5 van

Thank You

www.nrel.gov

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Technical Back-Up Slides

Acronyms

ATRI: American Transportation Research Institute **BETO:** Bioenergy Technologies Office **BEV:** Battery Electric Vehicle **CNG:** Compressed Natural Gas **EPRI:** Electric Power Research Institute **FASTSim:** Future Automotive Systems Technology Simulator **FCEV:** Fuel Cell Electric Vehicle FCTO: Fuel Cell Technologies Office FMCSA: Federal Motor Carrier Safety Administration H2A: Hydrogen Analysis H2FAST: Hydrogen Financial Analysis Scenario Tool HDRSAM: Heavy-Duty Refueling Station Analysis Model **HEV:** Hybrid-Electric Diesel Vehicle LTL: Less than truckload M/HDV: Medium/Heavy-Duty Vehicles **MSRP:** Minimum Suggested Retail Price MYRDD: Multi-Year Research, Development, and Demonstration Plan **OOIDA:** Owner Operator Independent Drivers Association **PHEV:** Plug-in Hybrid Electric Vehicle SERA: Scenario Evaluation and Regionalization Analysis **TCO:** Total Cost of Ownership **VIUS:** Vehicle Inventory and Use Survey **VTO:** Vehicle Technologies Office

Assumptions

FASTSim Modeling

- Cost and Performance Data Slide 30
- Acceleration Target: Slide 31 for Class 8 Tractors
- Vehicle Weight based on Sum of Component Weights multiplied by 1.2 factor (EPA M/HDV Final Rulemaking)¹
- Vehicle Price (MSRP) based on Sum of Component Costs multiplied by 1.5 factor (peer-reviewed FASTSim value)

SERA TCO Modeling

- Fuel Prices Slide 32
- Payload Opportunity Cost Slide 35-36
- O&M Cost Slide 33
- Dwell Cost Slide 34
- Vehicle Miles Traveled Based on Transportation Energy Data Book and Fleet DNA
- Vehicle Lifetime Based on Transportation Energy Data Book and Industry Feedback
- Discount Rate Based on Long Term Treasury Rates (3%), historical S&P 500 Performance (7-10%)

General

- Designed new powertrains to meet the performance of conventional (diesel) technology so a 1-1 vehicle displacement is implicitly assumed
- Durability and longevity of new powertrains is assumed to be the same as diesel technology which assumes vehicle manufacturers will create products that meet these requirements
- Assumed no incentives for zero or near-zero emission vehicles
- Assumed no value for emission reductions

Key Market Segmentation Assumptions

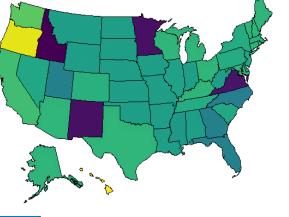
Target year	2018	2025	Ultimate	References	Notes
Batteries					
Battery pack mass [kg/kWh]	4.70	4.03	2.50	_	2018 values based on the 2019 VTO Truck Target Setting Work completed by Lustbader et al. (Advance Scenario)
HEV battery pack cost [2016\$/kWh]	389	275	80	ARB 2016 – (Lustbader, et al. 2019)	Ultimate value \$80/kWh (pack) are based on VTO's suggestion to use LDV targets while M/HDV targets are being set (email on 5/22/20). Interim set by calculating a constant %4.8 YoY improvement rate between 2018 and 2050
PHEV battery pack cost [2016\$/kWh]	389	275	80	VTO LDV Targets	Original source does not have dollar year so reported as nominal. Assume equal to 2016\$
PEV battery pack cost [2016\$/kWh]	389	275	80		Assumed: Pack Costs = System Costs (includes all cooling/structural components included for vehicle glider integration)
Power Electronics (PE)					
Power electronics with boost & motor [2016\$/kW]	53	46	26	Lustbader, et al. 2019	2019 VTO Truck Target Setting Work completed by Lustbader et al. (Advance Scenario)
FCEV					
Fuel cell specific power [kW/kg]	0.96	1.02	1.02	SA Inc. 2018, Supplemental data	Ultimate uses 2025 value since reference did not propose an Ultimate value
Fuel cell cost [2016\$/kW]	(160-200) 181**	113	60	2019 FCTO Record #19006	**Assumes \$170/kW in 2019 based on 1,000 units/yr (237,000 kW/yr)
Fuel cell system peak efficiency [% LHV]	63.6%	66%	72%	– (Class 8 Truck Targets)	Uses High Target for System Peak Efficiency
Storage specific mass [kWh-LHV/kg]	1.48	1.80	2.20	- 2019 FCTO Record #19008	
Storage cost [2016\$/kWh-LHV]	15.7	11.4	8.0	(Onboard Storage Cost)	Consistent with 2019 FCTO Record #19006 Assumes 100,000 systems/yr mfg vol (560,000 kg/yr which is ~7,000 systems for HD trucks)
CNG					
Engine efficency improvement (absolute)	0%	0%	0%	 FASTSim (multiple data sources) 	
Engine cost [\$/kW]	55	55	55	SA Inc. 2017 estimate	
Fuel storage cost [\$/usable kWh NG-LHV]	7.47	4.70	3.82	(currently unpublished)	Uses 1k, 30k, 500k systems/year production volumes
Fuel storage specific mass [kWh/kg]	4.21	4.47	5.10	FY15 GPRA Benefits Analysis	Limited data available
Conventional					
Engine specific power [kW/kg]	0.27	0.27	0.27		
Engine fixed cost [\$]	5000	5000	5000	FASTSim (multiple data sources)	
Engine power cost [\$/kW]	50	50	50		
Engine efficiency improvement (absolute)	0%	2%	10%	(Lustbader, et al. 2019)	Applies to Class 8 trucks, consistent with 2019 FCTO Record #19006
Fuel storage specific mass [kWh/kg]	9.88	9.88	9.88	FASTSim (multiple data sources)	

FASTSim designs alternative powertrains to match the performance of the diesel vehicle

Diesel - acceleration (0-60 mph) based on public data and industry feedback

Diesel hybrid (HEV) – designed to have 75% of propulsion power from the engine to reduce **FASTSin** reliance on its battery for extended road grade climbs

Fuel cell (FCEVs) - designed to be able to fully power the motor for grade operation while the hybrid battery was used for regenerative breaking

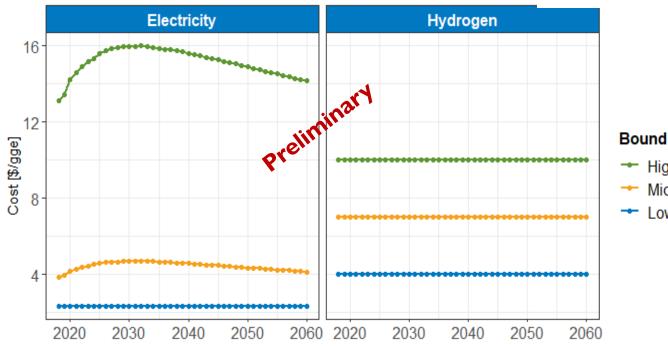

Plug-in hybrid (PHEV) – (Class 4 only) powertrain sized proportionally to Workhorse E-Gen

Vehicle	Drivetrain	Motor (kW)	Engine (kW)	Fuel Cell (kW)	Max weight (lb)	Acceleration 0-60 mph (s)
Class 8 truck	Diesel		317		80,000	60
Class 8 truck	CNG		327		80,000	58
Class 8 truck	HEV	79	235		80,000	60
Class 8 truck	EV	361			80,000	49
Class 8 truck	FCEV			328	80,000	55
Class 4 parcel delivery	Diesel		155		16,000	30
Class 4 parcel delivery	CNG		155		16,000	30
Class 4 parcel delivery	HEV	38	115		16,000	30
Class 4 parcel delivery	EV	146			16,000	30
Class 4 parcel delivery	FCEV			144	16,000	30
Class 4 parcel delivery	PHEV	68	82		16,000	30

Fuel prices based on various sources including EIA Energy Outlook, Tesla, DOE Targets, HDRSAM, H2FAST, and EPRI

Fuel	Low	Mid	High		
Diesel	AEO Low Oil	AEO Reference	AEO High Oil		
Natural	tural Anchored to Diesel prices and adjusted by repo				
Gas	price spread based AFDC data from 2016-2020*				
Electricity	Tesla quoted electricity price (\$0.07/kWh)	AEO Reference - Transportation	EPRI Reported DCFC Prices		
Hydrogen	DOE Hydrogen Price Target (\$4/kg)	HDRSAM/H2FAST (\$7/kg)	HDRSAM/H2FAST (\$10/kg)		

EPRI Reported DCFC Charging Prices

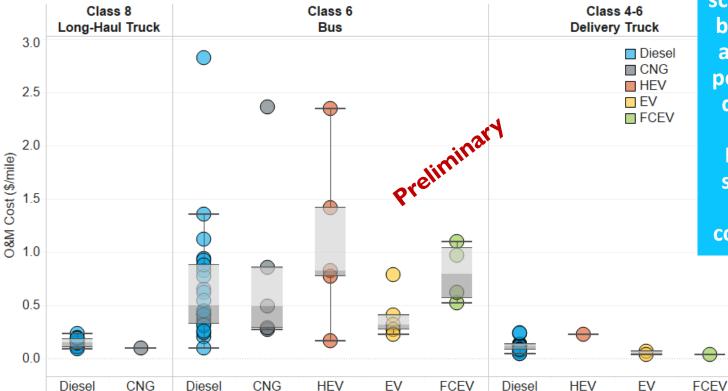


High Mid

Low

DCFC Rates (\$/kWh)

	0.50	
-	0.45	
-	0.40	
1	0.35	
	0.30	
-	0.25	


AEO Outlook CNG prices are ~25-30% lower than reported in AFDC for the same location

An actual-marketconversionmultiplier of 1.25 is used to scale the **AEO Outlook CNG** prices

*Recommended approach from VTO Clean Cities team that oversees AFDC database and CNG fuel prices

Operating and Maintenance costs based on extensive literature survey and NREL FC Bus Evaluations

Cost (\$/mi)	Bound	Diesel, HEV, PHEV	CNG	EV	FCEV
	Low	0.057	0.049	0.046	0.046
Class 4 Parcel Delivery	Mid	0.118	0.117	0.076	0.118
	High	0.233	0.231	0.111	0.270
	Low	0.075	0.064	0.060	0.060
Class 8 Tractor	Mid	0.152	0.151	0.098	0.152
	High	0.301	0.301	0.143	0.349

O&M costs based on literature data as available

Alternative powertrain costs scaled based on ratio between Diesel Bus and the alternative powertrain Bus if no data was available

Diesel, HEV, PHEV set to be the same based on comparative studies

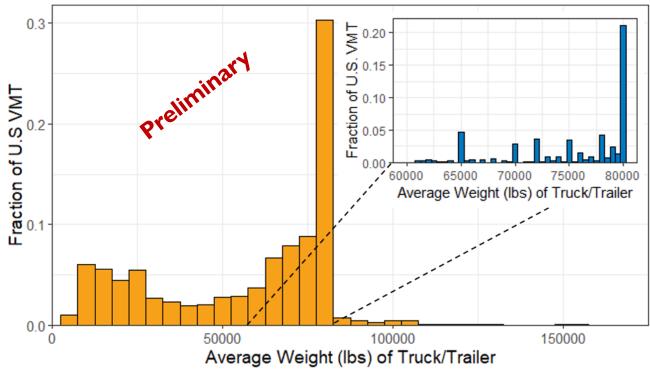
Dwell time cost based on refueling rates, fuel storage size, and hourly dwell time cost

Refueling Rates for CNG, FCEV, and EV

	CNG (gge/min)	FCEV (kg/min)	EV (kW)	Industry Scenario
Low	-	-	-	Day trip with refueling/recharging overnight
Mid	8	10	1000	Continuous (team) driving, refueling/recharging as needed. Ideal refueling/recharging rate
High	4	5	500	Continuous (team) driving, refueling/recharging as needed. Unideal refueling/recharging rate

Lower Limits on Refueling Times

	Diesel, HEV, CNG, FCEV (min)	EV and PHEV (min)
Low	-	-
Mid	5	30
High	10	60


Dwell (refueling or recharging) time based on industry reported values, NREL research, and claimed targets (Nikola, Tesla).

A constant rate of \$75/hr was used in this analysis.

Payload opportunity costs estimated to account for lost cargo capacity from heavier powertrains

Bound	Industry Scenario			
Low	No cost, volume limited LTL shipment			
Mid	Typical freight class, origin/destination, and weight break			
High	High freight class, unattractive origin/destination, and low weight break			

2002 VIUS showing VMT fraction by typical payload indicates strong possibility of being weight-limited

Payload costs account for Federal Law allowing 2,000lb capacity exceedance on Class 8 GVWR (up to 82,000lbs)

Cost of lost payload based on \$/lb-mi costs estimated for each vehicle based on that vehicle's total operating cost

Levelized cost of "buying" an additional, equivalent truck is used to estimate lost payload costs

Class 8 Long Haul (750 mile range) Payload Cost Range

Model Year	Bound	HEV (\$/mile)	CNG (\$/mile)	EV (\$/mile)	FCEV (\$/mile)
2018	Low	0	0	0	0
	Mid	0	0.002-0.004	1.745-3.948	0.06-0.12
	High	0	0.002-0.004	1.877-4.097	0.067-0.126
2025	Low	0	0	0	0
	Mid	-0.0010.001	00.001	0.477-1.055	0.019-0.036
	High	-0.0010.001	00.001	0.527-1.12	0.022-0.038
Ultimate	Low	0	0	0	0
	Mid	-0.0030.002	0	0.028-0.054	0
	High	-0.0030.002	0	0.034-0.061	0

Class 8 Long Haul (300 mile range) Payload Cost Range

Model Year	Bound	HEV (\$/mile)	CNG (\$/mile)	EV (\$/mile)	FCEV (\$/mile)
2018	Low	0	0	0	0
	Mid	0	0	0.167-0.357	0
	High	0	0	0.192-0.385	0
2025	Low	0	0	0	0
	Mid	-0.0020.001	0	0.044-0.09	0
	High	-0.0020.001	0	0.052-0.101	0
Ultimate	Low	0	0	0	0
	Mid	-0.0030.002	0	0	-0.0080.005
	High	-0.0040.002	0	0	-0.0090.006

Payload costs based on cost to buy an equivalent truck in that region

Payload costs thus depend on region since fuel price depends on region

Payload costs decrease over time as advanced powertrain weight decreases