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Overview

Timeline Barriers to Address

« Start: October 2019 A: Future Market Behavior

* End: Determined by DOE » Potential market for low value
* % complete (FY20): 80% energy and potential hydrogen

markets beyond transportation
D: Insufficient Suite of Models & Tools

E: Unplanned Studies and Analysis
»H2@Scale is a new concept and
requires analysis of its potential

impacts
Budget Partners/Collaborators
« Funding for FY20: $150K « NREL and INL

« DOE NE Office
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H2@SCALE EXPANDS HYDROGEN UTILIZATION BEYOND
CURRENT MARKETS - Relevance/Impact
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= Synthetic fuels production can contribute to large scale hydrogen demand
= Need to evaluate potential hydrogen demand and associated cost




EVALUATE ECONOMIC AND ENVIRONMENTAL IMPACTS OF
PRODUCING SYNTHETIC FUELS FROM ZERO-CARBON
HYDROGEN - Approach

DOE’s Fuel Cell

Technologies Office
Performance, (FCQ']I'O)

Energy and Program Plan and Multi-

Market data Year RD&D Plan

N Evaluate potential

m) hydrogen use, Hydrogen consumption

Energy ASPEN, Yl environmental benefits potential by synthetic
and and economics of fuel production, and

Market synthetic fuel production coast and environmental

impacts
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H,+CO,-> LIQUID HYDROCARBON FUELS AND CHEMICALS
— Relevance

» Electrofuels or “e-fuels” encompass energy carriers and their intermediates
synthesized primarily using a carbon source and electricity (for hydrogen)

Electrochemical Thermochemical Biological
processes processes processes

O
Methane
0O O “ FT fuels

Basic inputs Intermediates E-fuels
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MAJOR CO, AND ZERO-CARBON ELECTRICITY
SOURCES TO CONSIDER - Approach

Bio-derived CO,

= Ethanol plants
» Waste streams (MSW, residues, etc.)

Fossil- derived CO,

= Ammonia plants

= NG processing plants
= NG SMR plants

= Cement plants

= Iron & Steel mills

» Fossil power plants
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LARGE NUMBER OF SYNTHETIC CHEMICALS AND FUELS
PATHWAYS ARE POSSIBLE — Approach
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LCA of CO,—-BASED FUELS: SYSTEM BOUNDARY
— Approach

Capture, Purification, :

Jl Biomass- and waste-

il derived CO, : | Capture
-+ Ethanol plants L

+ Biomass gasification : Clean-up q

Plants é
: | Transportation Fuel

: : : : production
Fossil-derived CO, F

* NG processing plants
* NG SMR plants

* NG Ammonia plants
» Cement plants
 Steel mills

 Fossil power plants

» Waste streams (MSW, .
Compression /

residues, waste plastics):

*
--------------------------------
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HIGH-CONCENTRATION CO, SOURCES - Accomplishment
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OTHER LOWER-CONCENTRATION CO, SOURCES
— Accomplishment

Utah

Arizona

O Pipeline data CO2

CO2 source- Cement, kilotonnes

B CO2 source- H2 SMR, kilotonnes

o 50
O 100
() 300
() 500
* H2 SMR plant CO,: 28% purity, 44 MMT/year
Argonne &
10

* Cement plant CO,: 14-33% purity, 65 MMT /year




POTENTIAL H, DEMAND FOR SYNTHETIC HYDROCARBON
PRODUCTION FROM CONCENTRATED CO, SOURCES -
ccomplishment

= ~100 MMT of concentrated CO, sources are considered (out of total~ 5 GT CO,)

» 44 million MT from ethanol plants
v" Current CO, supply capacity of 14 MMT, and market demand of 11 MMT

» Remainder from hydrogen SMR (refineries) and ammonia plants

Preliminary

-

U.S. Merchant CO, Supply
(14.3 MMT)

NG Processing
3% Post-combustion

U.S. Merchant CO, Demand
(11 MMT) )
Chemical
Processing
oS T 7%
\Carbonated, Metals
‘\Beweragey’ abrication
/ 4%

\Agriculture CO2 Capacity (TPD)
1% () 1000 O 500 o 200
4» Potential Future Source

% of U.S. Manufacturing Sector Output
0.1% D 1.5%

Other
12%
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14 MMT POTENTIAL H, DEMAND WITH
100MMT CONCENTRATED CO, ANNULAY

— Accomplishment

*Assumption: CO,/H, mole ratio 1:3 for synthetic
hydrocarbon production

H2 demand
for synfuel using CO2

041

() o3

0.5

Recovered CO, from
@ Ethanol plants

H, plants
‘ Ammonia plants

Installed nuclear plants

U.S. Operating Commercial Nuclear Power Reactors

icensed to Operate (99)
R USNRC

[ —

Wind electricity potential

Solar electricity potential

Photovaltaic Solar Resource of the United States
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MODELED H, DEMAND FOR SYNTHETIC FISCHER-
TROPSCH (FT) HYDROCARBON PRODUCTION
— Accomplishment

Preliminary

= Product or by-product =" Other flows
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FT FUEL PROCESS SIMULATION USING ASPEN PLUS
— Accomplishment

= Six process areas were simulated

= Two systems were evaluated:
— with H, recycle
— without H, recycle (with electricity export) PW@Hﬁmmﬁ]@W
Stand-alone FT fuel production process simulated in Aspen Plus
: A1 Hz and CO2 compression | A2RWGS reaction  ; A3 FT-synthesis :

e e e e e e e ey

AS Power generation

e —— e ——— e ——— . —— e —— e —— e ——
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Water Hz compressor ||

|
i A6 Utility
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|
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I
I
Electrolysis :
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INTEGRATED ETHANOL AND FT FUEL MASS CONVERSION
— Accomplishment

FT fuel production is integrated with the dry milling corn ethanol production via 154 kg CO,
479 kg corn and 17 kg H, are converted into 161 kg ethanol, 138 kg DGS, and 23 kg FT fuel
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= CO,/H, mole ratio 1:2.4 for synthetic FT fuel production
= Carbon conversion efficiency ~ 46% Argonne &
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HYDROGEN COST < $1/kg FOR FT FUEL TO BREAKEVEN
WITH $3.6/gal DIESEL — Accomplishment

14
w=m Capital costs ww= Fixed O&M ! ‘1
Feedstock costs-H, mmm Feedstock costs-CO, 12.0
12 + ==mByproduct credits mmm Other variable costs e 11.6
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SUMMARY — Accomplishment

» Modeled hydrogen demand and product yield for synthetic FT production

» Simulated two FT plant designs, with and without recycling of hydrogen,
using Aspen Plus

= Conducted life cycle analysis with GREET® model
— Evaluated two co-product allocation methods
— More than 90% CO,, emission reduction compared to petroleum fuels

» Conducted techno-economic analysis using H2A framework to determine
cost of hydrogen for FT fuels to breakeven with petroleum fuels

— Hydrogen cost < $1/kg for FT to breakeven with $3.6/gal Diesel

» Documented data sources, modeling approach and analysis in two papers
— Currently under review
— Publication pending
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Collaborations and Acknowledgments

H2@Scale is a multi-national laboratory effort with collaboration
across DOE national lab complex

— Mark Ruth and Paige Jadun: NREL
— Richard Boardman: INL
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Future Work

= Consider additional CO, sources for synthetic hydrocarbon production

— e.g., hatural gas processing plants, cement plants, power plants and
direct air capture

= Conduct economic and environmental analysis of other synthetic fuels and
chemicals

— e.g., methanol and methanol-to-gasoline, etc.

— Determine potential CO, reduction for each fuel and chemical pathway
compared to baseline current technologies

— Determine H, cost for synthetic hydrocarbon to breakeven with baseline
technology pathway

= Conduct regional analysis considering proximity of CO, and H, supplies
— Evaluate economics of delivered H, vs. onsite production
— Evaluate economics of CO, capture and transportation

Argonne &
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Project Summary

» Relevance: Hydrogen from clean energy sources can be used with available CO, sources to
produce near zero-carbon synthetic hydrocarbon chemicals and fuels

= Approach: Evaluate economic and environmental impacts of synthetic fuel production using
Aspen, H2A framework and GREET models

» Collaborations: H2@Scale is a multi-national laboratory effort with collaboration across DOE
national lab complex

» Technical accomplishments and progress:
— Modeled hydrogen demand and product yield for synthetic FT production
— Evaluated two FT plant designs, with and without recycling of hydrogen
— Conducted life cycle analysis with GREET® model
» Evaluated two co-product allocation methods
» More than 90% CO,, emission reduction compared to petroleum fuels
— Conducted techno-economic analysis to determine cost of hydrogen for FT fuels to
breakeven with petroleum fuels
» Hhydrogen cost < $1/kg for FT to breakeven with $3.6/gal Diesel
— Documented data sources, modeling approach and analysis in two papers

» Future Research:
— Consider additional CO, sources for synthetic hydrocarbon production

— Conduct economic and environmental analysis of other synthetic fuels and chemicals
— Conduct regional analysis considering proximity of CO, and H, supplies
— Evaluate economics of delivered H, vs. onsite production

— Evaluate economics of CO, capture and transportation _ Argonne &
aelgowainy@anl.gov
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