2020 DOE Hydrogen and Fuel Cells Program Annual Merit Review

Synthetic Fuels Technoeconomic Analysis and Life Cycle Analysis

AMGAD ELGOWAINY (PI), GUIYAN ZANG and PINGPING SUN

Argonne National Laboratory

May 30, 2020

SA174

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: October 2019
- End: Determined by DOE
- % complete (FY20): 80%

Barriers to Address

- A: Future Market Behavior
 - Potential market for low value energy and potential hydrogen markets beyond transportation
- D: Insufficient Suite of Models & Tools
- E: Unplanned Studies and Analysis ≻H2@Scale is a new concept and requires analysis of its potential impacts

Budget

• Funding for FY20: \$150K

Partners/Collaborators

- NREL and INL
- DOE NE Office

H2@SCALE EXPANDS HYDROGEN UTILIZATION BEYOND CURRENT MARKETS – Relevance/Impact

- Synthetic fuels production can contribute to large scale hydrogen demand
- Need to evaluate potential hydrogen demand and associated cost

EVALUATE ECONOMIC AND ENVIRONMENTAL IMPACTS OF PRODUCING SYNTHETIC FUELS FROM ZERO-CARBON HYDROGEN – Approach

$H_2+CO_2 \rightarrow LIQUID HYDROCARBON FUELS AND CHEMICALS - Relevance$

 Electrofuels or "e-fuels" encompass energy carriers and their intermediates synthesized primarily using a carbon source and electricity (for hydrogen)

MAJOR CO₂ AND ZERO–CARBON ELECTRICITY SOURCES TO CONSIDER – Approach

Fossil power plants

LARGE NUMBER OF SYNTHETIC CHEMICALS AND FUELS PATHWAYS ARE POSSIBLE – Approach

LCA of CO₂–BASED FUELS: SYSTEM BOUNDARY – Approach

HIGH-CONCENTRATION CO₂ SOURCES – Accomplishment

OTHER LOWER-CONCENTRATION CO₂ SOURCES – Accomplishment

• Cement plant CO₂: 14-33% purity, 65 MMT /year

POTENTIAL H₂ DEMAND FOR SYNTHETIC HYDROCARBON PRODUCTION FROM CONCENTRATED CO₂ SOURCES – Accomplishment

- ~100 MMT of concentrated CO₂ sources are considered (out of total~ 5 GT CO₂)
 - ➢ 44 million MT from ethanol plants
 - ✓ Current CO_2 supply capacity of 14 MMT, and market demand of 11 MMT
 - Remainder from hydrogen SMR (refineries) and ammonia plants

Source: Supekar and Skerlos, ES&T (2014)

14 MMT POTENTIAL H₂ DEMAND WITH **100MMT CONCENTRATED CO₂ ANNULAY** - Accomplishment

Installed nuclear plants U.S. Operating Commercial Nuclear Power Reactors

Wind electricity potential

Solar electricity potential

12

MODELED H₂ DEMAND FOR SYNTHETIC FISCHER-TROPSCH (FT) HYDROCARBON PRODUCTION – Accomplishment

Well to wheel (WTW) boundary of FT fuel production from electrolysis hydrogen and ethanol plant by-product CO₂

Life cycle emissions

FT FUEL PROCESS SIMULATION USING ASPEN PLUS – Accomplishment

- Six process areas were simulated
- Two systems were evaluated:
 - with H₂ recycle
 - without H_2 recycle (with electricity export)

Preliminary

INTEGRATED ETHANOL AND FT FUEL MASS CONVERSION – Accomplishment

- FT fuel production is integrated with the dry milling corn ethanol production via 154 kg CO₂
- 479 kg corn and 17 kg H₂ are converted into 161 kg ethanol, 138 kg DGS, and 23 kg FT fuel

CARBON-NEUTRAL HYDROGEN PRODUCES NET ZERO **CARBON FT FUELS – Accomplishment**

(Forthcoming by Zang et al.)

HYDROGEN COST < \$1/kg FOR FT FUEL TO BREAKEVEN WITH \$3.6/gal DIESEL – Accomplishment

SUMMARY – Accomplishment

- Modeled hydrogen demand and product yield for synthetic FT production
- Simulated two FT plant designs, with and without recycling of hydrogen, using Aspen Plus
- Conducted life cycle analysis with GREET[®] model
 - Evaluated two co-product allocation methods
 - More than 90% CO_{2e} emission reduction compared to petroleum fuels
- Conducted techno-economic analysis using H2A framework to determine cost of hydrogen for FT fuels to breakeven with petroleum fuels
 - Hydrogen cost < \$1/kg for FT to breakeven with \$3.6/gal Diesel
- Documented data sources, modeling approach and analysis in two papers
 - Currently under review
 - Publication pending

Collaborations and Acknowledgments

H2@Scale is a multi-national laboratory effort with collaboration across DOE national lab complex

- Mark Ruth and Paige Jadun: NREL
- Richard Boardman: INL

Future Work

- Consider additional CO₂ sources for synthetic hydrocarbon production
 - e.g., natural gas processing plants, cement plants, power plants and direct air capture
- Conduct economic and environmental analysis of other synthetic fuels and chemicals
 - e.g., methanol and methanol-to-gasoline, etc.
 - Determine potential CO₂ reduction for each fuel and chemical pathway compared to baseline current technologies
 - Determine H₂ cost for synthetic hydrocarbon to breakeven with baseline technology pathway
- Conduct regional analysis considering proximity of CO₂ and H₂ supplies
 - Evaluate economics of delivered H_2 vs. onsite production
 - Evaluate economics of CO₂ capture and transportation

Project Summary

- Relevance: Hydrogen from clean energy sources can be used with available CO₂ sources to produce near zero-carbon synthetic hydrocarbon chemicals and fuels
- Approach: Evaluate economic and environmental impacts of synthetic fuel production using Aspen, H2A framework and GREET models
- Collaborations: H2@Scale is a multi-national laboratory effort with collaboration across DOE national lab complex
- Technical accomplishments and progress:
 - Modeled hydrogen demand and product yield for synthetic FT production
 - Evaluated two FT plant designs, with and without recycling of hydrogen
 - Conducted life cycle analysis with GREET[®] model
 - Evaluated two co-product allocation methods
 - > More than 90% CO_{2e} emission reduction compared to petroleum fuels
 - Conducted techno-economic analysis to determine cost of hydrogen for FT fuels to breakeven with petroleum fuels
 - Hhydrogen cost < \$1/kg for FT to breakeven with \$3.6/gal Diesel</p>
 - Documented data sources, modeling approach and analysis in two papers

• Future Research:

- Consider additional CO_2 sources for synthetic hydrocarbon production
- Conduct economic and environmental analysis of other synthetic fuels and chemicals
- Conduct regional analysis considering proximity of CO_2 and H_2 supplies
- Evaluate economics of delivered H_2 vs. onsite production
- Evaluate economics of CO_2 capture and transportation