

Integrated Hydrogen Production and Consumption for Improved Utility Operations

2020 DOE Hydrogen & Fuel Cells Technologies Office

Annual Merit Review Poster

PI: Monjid Hamdan

VP of Engineering

Giner ELX, Inc.

89 Rumford Ave. Newton, Ma. 02466

Project ID: TA030

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start: May. 1st, 2020
- **Project End:** April 30th, 2023
- Percent Complete: 00%

Budget

- Total Project Budget: \$9.1 M
 - Total Federal Share: \$4.25 M
 - □ **Total Recipient Share:** \$4.84 M
 - Total DOE Funds Spent*: \$0.0 M
 - * As of 3/31/2020

Technical Barriers¹

System(s) Integration, Reliability, Cost, Performance, and Efficiency

Technical Targets: Small Compressors: Fueling Sites (~100 kg H₂/hr)²

Characteristics	Units	2015 Status	2020 Target
Hydrogen Levelized Cost (Production Only) ³	\$/kg	3.90	2.30
Electricity Price ³	\$/kWh	0.049	0.031
Electrolyzer Cap. Cost Contribution ²	\$/kg	0.50	0.40
Electrolyzer Steels Efficiency 3	% (LHV)	76	78
Electrolyzer Stack Efficiency ³	kWh/kg-H ₂	44	43
Electrolyzer System Efficiency	% (LHV)	73	75
Electrolyzer System Efficiency ³	kWh/kg-H ₂	46	44.7
Aggregate cost of transport, distribution, & fueling ⁴	\$/gge	2.00	<2.00
Fuel Cell System Costs ⁵	\$kW _{net}	53	40

¹ Office of Energy Efficiency and Renewable Energy (EERE) announcement DE-FOA-0002022 ² HFTO MYRD&D Plan (2015)

³Hydrogen Production, Central Water Electrolysis, HFTO MYRD&D Plan (2015)

⁴Hydrogen Delivery, HFTO MYRD&D Plan (2015)

⁵Fuel Cells, Integrated Transportation Fuel Cell Power Systems Operating on Direct Hydrogen HFTO MYRD&D Plan (2016)

Partners

- Orlando Utilities Commission (OUC)
- General Motors, LLC (GM)
- OneH2
- Giner ELX, Inc.
 - Univ. of Central Florida/
 - Florida Solar Energy Center (UCF-FSEC) TEA
- National Renewable Energy Lab (NREL) Solar Energy Technology Center (SETO) - Modelling

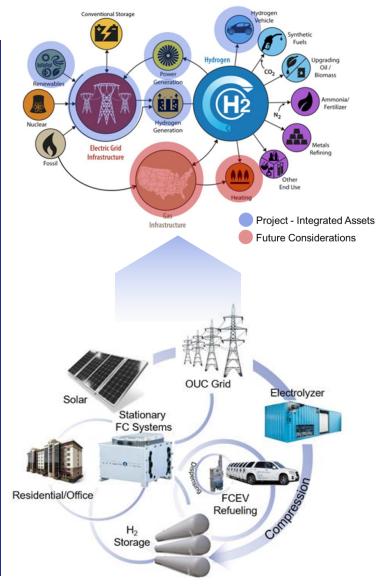
- Utility Co./System Integration/Solar
- Stationary Fuel Cell Systems
- Storage Dispensing and Compression
- Electrolyzers

NERELX

- **O** GINERELX

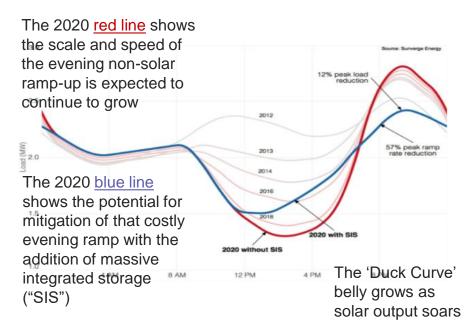
Relevance

Overall Project Objectives


- Demonstrate grid-level hydrogen assets to incentivize and assist the hydrogen economy across multiple sectors
- Manufacture & assemble integrated system incorporating PEMbased electrolysis for H₂ production, compressed H₂ storage, H₂ dispensing for FCEV refueling, and stationary fuel cells for electricity generation
- Develop and optimize economic dispatch models based on grid-level controls to address high penetration renewable integration impacts

FY 20 Objectives

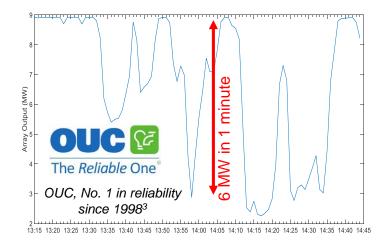
- Complete techno-economic analysis
- Complete and optimize designs of individual system units
- Develop model demonstrating path to < \$2/kg-H₂


Impact

- Grid-integrated hydrogen assets enable system operators to leverage intermittently available electricity to produce hydrogen for use in FCEVs, back-up power, and grid operational use cases
 - Ensures that the hydrogen is produced at the lowest electricity cost, and then consumed for the greatest possible value
 - Develops business models where utilities provide both electricity and hydrogen fuel, supporting both the grid and the transportation sector

Background

- Duck Curve indicates steep ramping requirements and over-generation risk, accentuated w/ increasing solar PV
- Long-duration (8+ hours) required to address ramp-rates
- Solution: Hydrogen production at utility scale can provide long duration capacity as a controllable load
 - Dispatch electrolyzers to reduce overgeneration risks and smooth ramp rates


The "California Duck" Chart¹

Non-solar generation required over a 24-hour period (2012 to 2020)

Orlando Utility Commission

NERELX

Output Variation from an 8.9 $\rm MW_{AC}\,PV\,Array^2$

- OUC's solar penetration is < 1% retail sales, but increases to 10% by 2022, and could be 20% by 2024+
 - Solution: PEM Electrolyzer with fast response time, and scalable to TWh
 - Electrolyzers can provide renewably generated hydrogen and provide grid services as a controllable load with fast response times
 - Development of hydrogen markets required

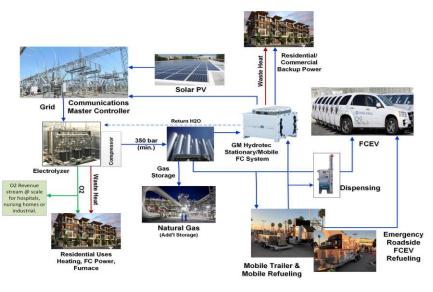
GINERELX

Approach: Program Overview

H₂-Cost Reduction Grid-Integrated Control Cyber Security

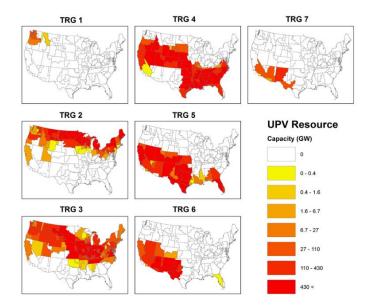
Δī	TEA, System Optimization & Design	 Technoeconomic Analysis Complete/Optimize design(s) of individual system units (FC, Electrolyzer, PV Array, Storage, Dispensing) Develop utility control architecture to dispatch Grid-integrated H2 Assets Demonstrating path to achieve < \$2/kg-H₂ 	Year 1
curi			
Cyber Security	Unit Assemblies Utility Integration	 Complete individual system unit assemblies, delivery, and integration: 90 Nm³/hr electrolyzer BOP and three (3) 30 Nm³/hr electrolyzer stacks installed Two (2) 60 kW [100 kW peak] FC systems 350 bar compressor, storage and dispensing units, Integration of individual system units with OUC Utility 	Year 2
	Utility Integrated	 Integrated Operation Demonstrate integrated system dispatch with utility Complete economic and market feasibility studies, establishing multiple value streams for hydrogen 	Year 3
	Operation		

Approach: YR1 Tasks & Milestone Progress

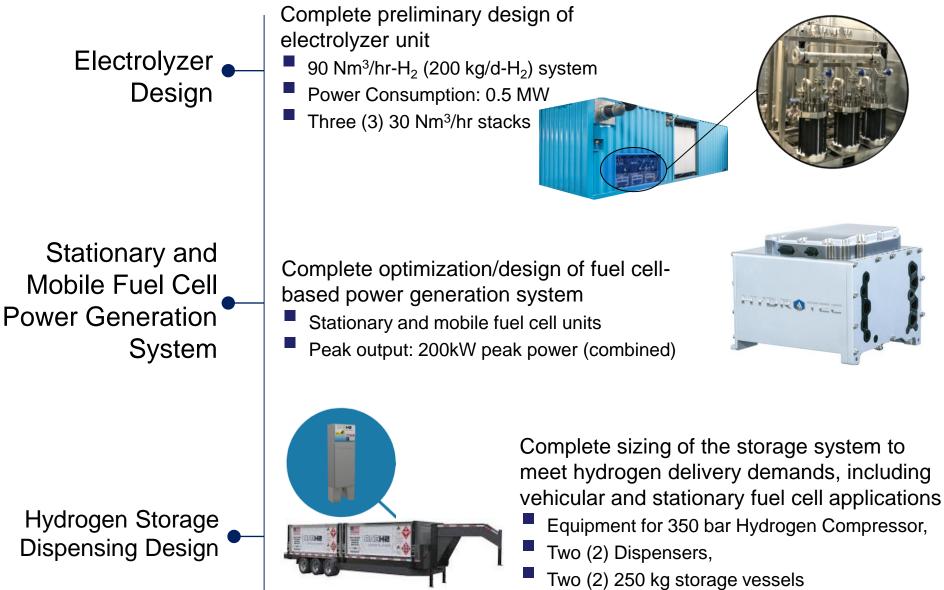

Task No.	Task Title	Mile- stone	Milestone Description (Go/No-Go Decision Criteria)	Progress Notes	Percent Complete
1	Techno- Economic Feasibility Study	M1.1	Complete Techno-Economic Feasibility Study. Demonstration path to achieve \$2-4/kg. Summarizing the potential for PV- electrolyzer systems to increase the optimal PV penetration in the U.S. and/or reduce the cost to hit a high PV penetration target	TEA Initiated	0%
2	Electrolyzer Design	M1.2	Complete preliminary design of electrolyzer unit.	In process	0%
3	Stationary and Mobile Fuel Cell Power Generation System			In process	0%
4	Hydrogen Storage, Dispensing Design	, Complete sizing of the storage system to meet hydrogen delivery		In process	0%
5	OUC Host Site		Complete site prep for systems integration	In process	0%
6	OUC Development of		Complete Economic Dispatch Models. This information will be used to develop utility control architecture (and will be an ongoing process that will be optimized in Y2)	In process	0%
7	Cybersecurity Analysis	-	Initiate cybersecurity analysis related to grid integrated systems and hydrogen safety.	In process	0%
Go/N	Go/No-Go Decision Y1 Develop utility control architecture to dispatch integrated Utility, Electrolyzer, Storage, and Fuel Cell systems based on PV RES at OUC. Demonstrating path to achieve < \$2/kg-H ₂				

GINERELX

Techno-Economic Feasibility Studies

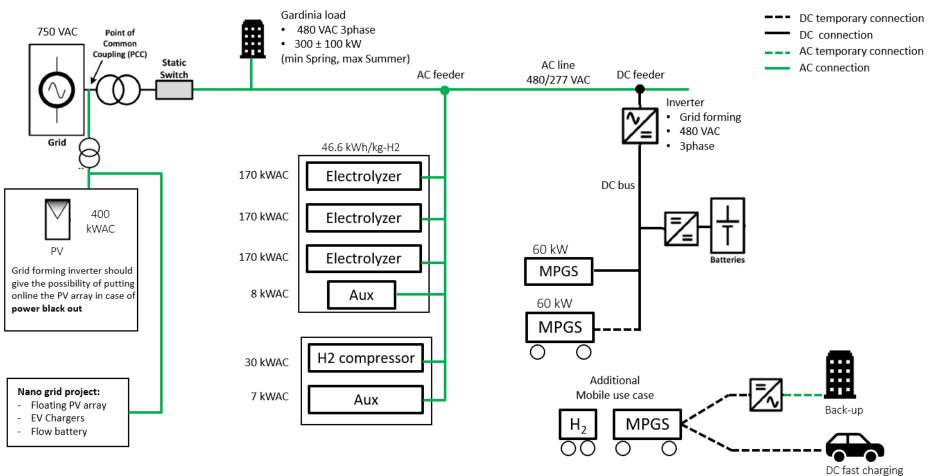

Integrated Asset-based Studies

- Determine lowest cost electric from PV and least-cost way of building and operating the electrical PV system with integrated hydrogen assets
- **M1.1a**: Demonstration path to achieve <\$2/kg-H₂


Large-Scale Utility PV based

- ReEDs Model¹: ReEDS solar photovoltaic technologies modeling: large-scale utility PV and distribution-side utility-scale PV
- Identifies the least-cost mix of technologies that meet regional electric power demand requirements
 - **M1.1b**: Paper summarizing the potential for PVelectrolyzer systems to increase the optimal PV penetration in the U.S. and/or reduce the cost to achieve a high PV penetration target

INERELX


Utility Hydrogen Asset Optimization

NERELX

Utility Site Architecture Design

ELECTRICAL ARCHITECTURE PROPOSAL

Preliminary architecture design at utility site demonstrating hydrogen asset tie-in to OUC grid

GINERELX

Collaborations/Acknowledgements

Giner ELX, Inc. -Monjid Hamdan -Prime	Industry	Electrolyzer system engineering, development, and deployment
Orlando Utilities Commission (OUC) -Justin Kramer -Chanda Durnford Subcontractor	Utility	Utility Company/Solar Integration/FCEV Fleet
General Motors, LLC. (GM) -Adam King -Subcontractor	Industry	Stationary Fuel Cell Systems/Electrical Generation
OneH2 -Michael Dawson -Subcontractor	Industry	Storage, Dispensing, and Compression
Univ. of Central Florida-Florida/Solar Energy Center (UCF-FSEC) -James Fenton -Subcontractor	Academia	Techno-Economic Analysis: Solar to H_2 , Integrated System. Optimization: technical, operational, energy efficiencies, and safety
National Renewable Energy Lab (NREL) -Paige Jadun -Mark Ruth -Bryan Pivovar Subcontractor	National Lab	Modelling: Modify and update Regional Energy Deployment System (ReEDS). Determine potential for electrolyzer systems to increase the penetration of PV

Department of Energy DOE Fuel Cell Technologies Office (HFTO) Solar Energy Technologies Office (SETO) -Mr. Brian Hunter (GO) -Dr. Sunita Satyapal

GINERELX

Summary

Program Start on 5/01/2020

- Initiated Technoeconomic feasibility Studies
 - FSEC
 - NREL-ReEDS
- Initiated optimization of system designs

Future Plans* (FY2020-21)

Complete Techno-economic Feasibility Studies

- □ Demonstration path to achieve <\$2/kg.
- Demonstrate potential for PV-electrolyzer systems to increase the optimal PV penetration in the U.S. and/or reduce the cost to hit a high PV penetration target

System:

- Complete preliminary design(s), sizing, and optimization of Electrolyzer, Stationary Fuel Cell, Compression, Storage, and Dispensing systems
- Complete preparation at OUC utility site for integration of hydrogen assets
- Complete Utility dispatch models and utility control architecture

Future Challenges

Procurement/delay of FCEV(s)

NERELX