Stationary Direct Methanol Fuel Cells Using Pure Methanol

PI and presenter: Xianglin Li / University of Kansas

Co-PI: Jun Li / Kansas State University

Co-PI: Gang Wu/ University at Buffalo, SUNY

Co-PI: Shawn Litster / Carnegie Mellon University

DOE project award # DE-EE0008440

Date: June 11, 2021

DOE Hydrogen Program
2021 Annual Merit Review and Peer Evaluation Meeting

AMR Project ID # FC317

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Goal

Project Goal

- Develop stationary direct methanol fuel cells (DMFCs) using pure methanol as the fuel.
- The DMFC prototype will produce peak power density of $\geq 300 \text{ mW/cm}^2$ with total loading of $\leq 3 \text{ mgPGM/cm}^2$.

Project Outcomes

The project will advance four novel concepts in parallel:

- 1. Cathode PGM-free Catalyst;
- 2. Anode Catalyst with Ultralow Loading PtRu on VACNFs Support;
- 3. Electrode fabrication and characterization;
- 4. Passive Fuel and water management.

Project Impacts

- Technical improvements and cost reductions would facilitate fuel cell market penetration in forklift and stationary power applications.
- The design and manufacture of cost-effective high performance PGM-free cathodes and ultralow PGM anodes will also have positive impacts on fuel cells for transportation and other portable applications.

Overview

Timeline

Project Start Date: 10/01/2018

BP1: 10/01/2018 to 3/31/2020

BP2: 04/01/2020 to 3/31/2021

BP3: 04/01/2021 to 3/31/2022

• Effective Project Start Date: 01/03/2019

Project End Date: 3/31/2022

Budget

• Total Project Budget: \$ 1,249,449

Recipient Share: \$ 250,050 Federal Share: \$ 999,399

Planned funding for

Budget Period 1: \$ 469,489

Budget Period 2: \$ 410,090

• Total DOE Funds Spent*: \$596, 282

* As of 3/31/2021

Barriers Addressed

- High platinum group metals (PGM) catalyst loading
- Catalyst poisoning by methanol
- High fuel crossover

Partners

PI: Xianglin Li

University of Kansas (KU)

Co-PI: Jun Li

Kansas State University (KSU)

Co-PI: Gang Wu

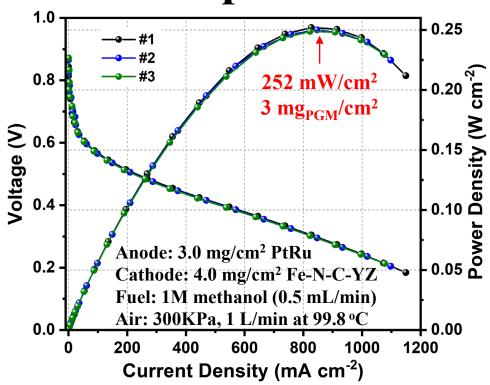
University at Buffalo (UB)

Co-PI: Shawn Litster

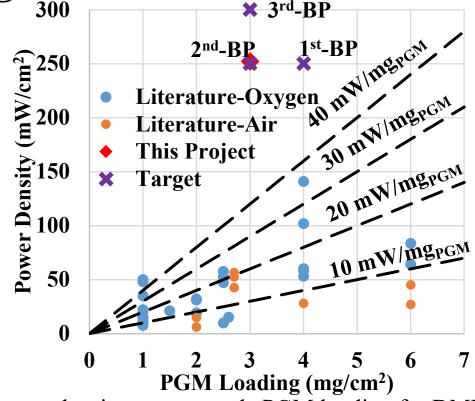
Carnegie Mellon University (CMU)

Relevance/Impact

- <u>Objectives</u>: The goal of this collaborative research is to develop stationary direct methanol fuel cells (DMFCs) using pure methanol as the fuel.
- The project will address three critical challenges from material to system levels:
 - (1) Reduce noble catalyst loading and cost;
 - (2) Enhance cathode tolerance of methanol poisoning;
 - (3) Decrease methanol crossover.
- End of the Project Goal: The MEA and prototype delivered at the end of the project (50 cm² MEA) will produce peak power density of $\geq 300 \text{ mW/cm}^2$ with total loading of $\leq 3 \text{ mgPGM/cm}^2$.
- 2st BP target (4/1/2020 3/31/2021): The fuel cell prototype to be delivered will meet the milestone of $\geq 250 \text{ mW/cm}^2$ with 3 mgPGM/cm².

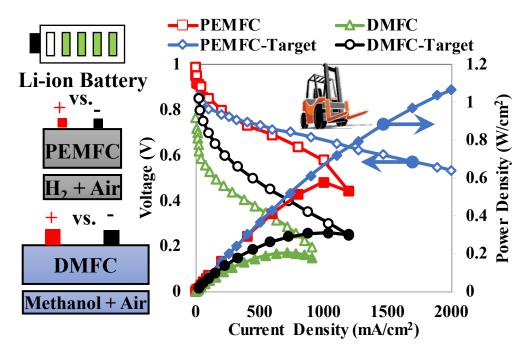

Approach: Project Milestones and Status

This research integrates complementary institutional expertise on


- Supported anode catalysts (KSU)
- Platinum group metals free (PGM-free) cathode catalyst (UB)
- Electrode fabrication, characterization, and optimization (CMU)
- Multi-phase mass transfer (KU)

	Milestone Description (Status as of 3/31/2021)	Status
Q5	 Integrate fuel and water regulations into MEAs and test by 16 M methanol solutions. Optimize hierarchical particle size and electrode using reconstructed digital electrodes. Determine procedures and parameters of ASTs. 	100%
Q6	 Generate PGM-free cathode catalysts with E_{1/2}>0.85 V using dilute methanol solution. Develop anode catalysts with lower degradation rate than HiSPEC® 10000 PtRu/C. 	90%
Q 7	 Perform particle-scale transport and reaction modeling to maximize catalyst utilization. Single cells achieve ≥ 200 mW/cm² with ≤3 mgPGM/cm² and >3M methanol solution. 	100%
Q8	Go/No-GO Single cells achieve ≥ 250 mW/cm ² with ≤ 3 mgPGM/cm ² .	100%

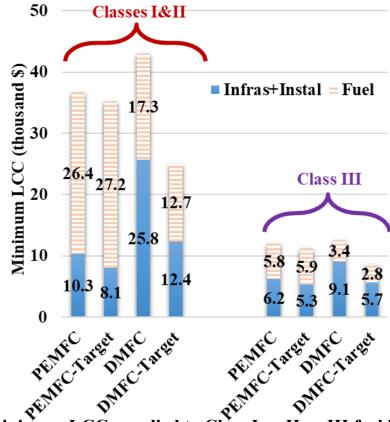
Accomplishments and Progress – Overview


The peak power density of 252 mW/cm² was achieved at high temperature of 99.8 °C at 300 kPa back pressure of air (1000 sccm) and 1.0 M methanol (0.5 mL/min).

Power density versus anode PGM loading for DMFCs with PGM-free cathodes reported in the literature (circle), achieved by this research team (diamond), and project targets (cross).

The project team has successfully met the Go/No-Go performance milestone of the 2nd budget period (04/01/2020 to 03/31/2021): Achieve the peak power density of at least 250 mW/cm² with no more than 3.0 mg/cm² PGM catalyst loading. *Please note that both the air flow rate and pressure are higher than proposed operating conditions.*

-Technical and Economic Analyses of Fuel Cells in Forklift Industry


PEMFC: 0.6 W/cm²; 0.4 mg_{PGM}/cm²

PEMFC Target: 1 W/cm²; 0.125 mg_{PGM}/cm²

DMFC: 0.2 W/cm²; 6 mg_{PGM}/cm²

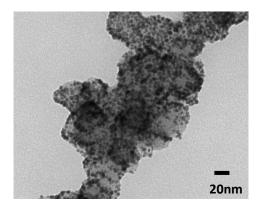
DMFC Target: 0.3 W/cm²; 3 mg_{PGM}/cm²

There Are Now More Than **35,000** Hydrogen Fuel Cell Forklifts (850,000 total) in Use Across the United States – DOE, Oct 2020

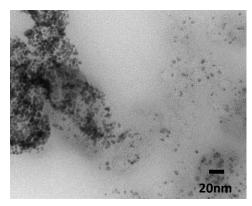
The minimum LCCs applied to Class I or II or III forklifts.

Comparing with PEMFC, DMFC has

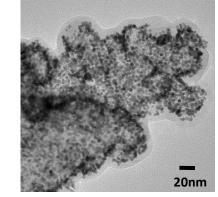
- Lower infrastructure costs (\$75k vs. ~\$1M per site)
- Much lower fuel cost (\sim \$0.64/GGE vs. \$5-\$22/GGE)
- Higher fuel cell cost (~\$4,000/kW vs. ~\$2,000/kW)


As power sources of forklifts, DMFCs could have up to 30% lower LCC (10 years) than PEMFCs.

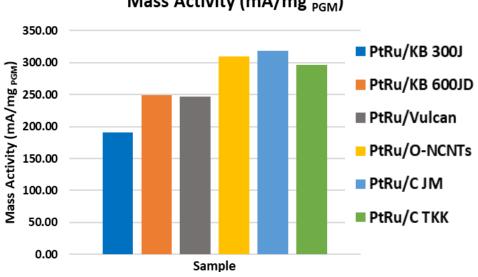
- Anode Catalyst (PtRu deposited on commercial carbon supports)


Deposit PtRu on commercial high-surface-area carbon supports:

- ❖ Vulcan carbon®(XR-72) (BET surface area -250m²/g)
- ❖ Ketjen Black® EC-300J (BET surface area − 800m²/g)
- ❖ Ketjen Black® EC-600JD (BET surface area − 1400m²/g)

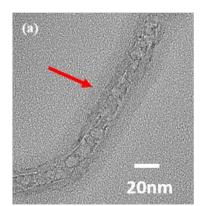

PtRu/KB 300J

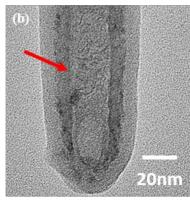
PtRu/KB 600JD

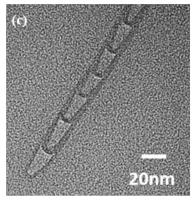

PtRu/Vulcan

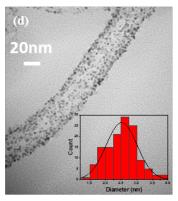
PtRu/C TKK
PtRu/C JM
PtRu/KB 300J
PtRu/KB 600JD
PtRu/Vulcan

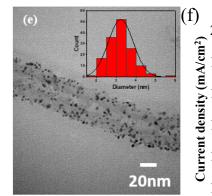
10

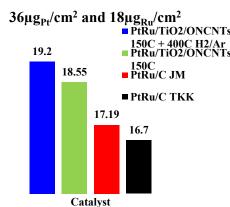

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
Potential V vs Ag/AgCl (1M)
Mass Activity (mA/mg PGM)

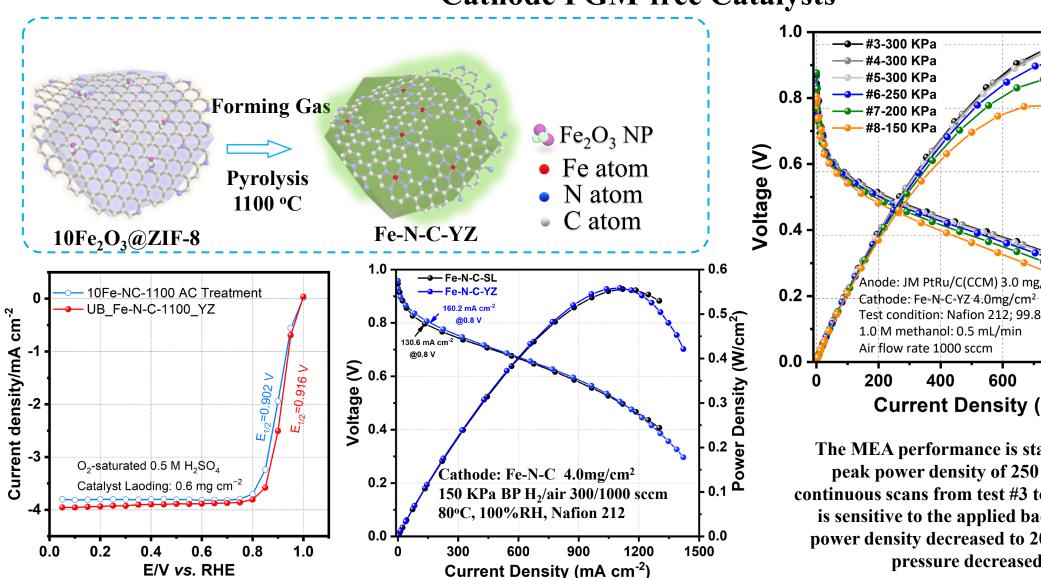


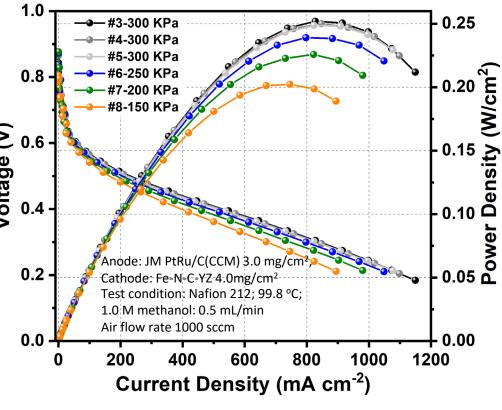



- Anode Catalyst Synthesized with Microwave-Assistant Approach


- ❖ O-NCNTs Oxygenated nitrogen doped carbon nanotubes
- ❖ PtRu/O-NCNTs Pt and Ru deposited on oxygenated nitrogen doped carbon nanotubes
- ❖ TiO₂/O-NCNTs 150C Titanium dioxide deposited on O-NCNTs at 150C assisted by microwave (MW)
- ❖ TiO₂/O-NCNTs 150C + 400C air TiO₂/O-NCNTs 150C MW samples + 400C annealing in air for 1hr
- ❖ Pt/TiO₂/O-NCNTs 150C Pt deposited on TiO₂/O-NCNTs 150C MW
- ❖ Pt/TiO₂/O-NCNTs 150C + 400C − Pt deposited on TiO₂/O-NCNTs 150C MW + 400C annealing in air for 1hr
- **❖ PtRu/TiO₂/O-NCNTs 150C** − PtRu deposited on TiO₂/O-NCNTs MW
- ❖ PtRu/TiO2/O-NCNTs 150C + 400C H₂/Ar − PtRu deposited on TiO₂/O-NCNTs + 400 C annealing inH₂/Ar.

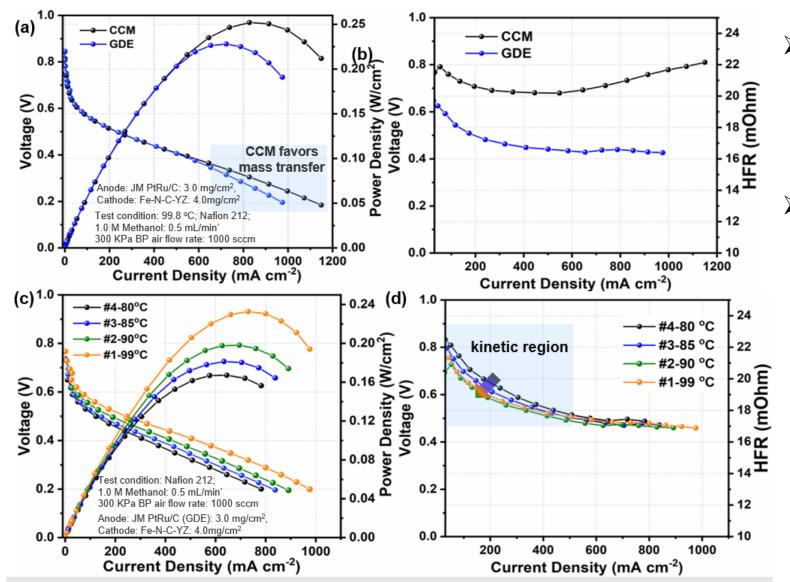





TEM images of (a) TiO₂/O-NCNTs 150 °C, (b) TiO₂/O-NCNTs 150 °C + 400 °C, (c) bare O-NCNTs, (d) Pt/TiO₂/O-NCNTs 150 °C and (e) Pt/TiO₂/O-NCNTs 150 °C + 400 °C. The insets of (d) and (e) show the corresponding histogram. (f) Half-cell current density (mA/cm²) of best-performing catalysts.

Customized PtRu/TiO2/O-NCNTs have higher current density than the best commercial PtRu/C catalysts.

- Cathode PGM-free Catalysts



The MEA performance is stable and maintains the peak power density of 250 mW/cm² after three continuous scans from test #3 to 5. But the performance is sensitive to the applied back pressure with peak power density decreased to 204 mW/cm² when back pressure decreased to 150 KPa.

- GDE vs. CCM using PGM-free Catalysts

- > CCM technique is benefit for mass transfer as it straightforward presented the catalysts advantageous porous structure separated from GDL.
- ➤ Additional spray in GDE offsets the ohmic loss.

- > High temperature increased reaction kinetic.
- > Methanol evaporation was accelerated at higher temperature.

Carnegie Mellon University

- MEA Optimization: Spray vs. Blade Coating

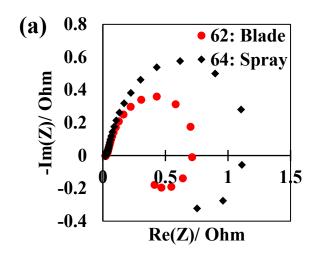


Table 1 Values of parameters fitted by the EIS results

	Cell 62: Blade	Cell 64: Spray
	Coated	Coated
$C_{d}(F)$	0.4958	0.5526
$R_{ct}(Ohm)$		1.2139
R_o (Ohm)	0.2928	0.3237
L (H)		

Lower resistances with blade coated anode

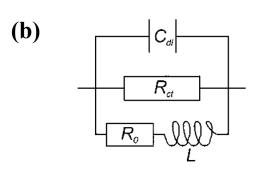
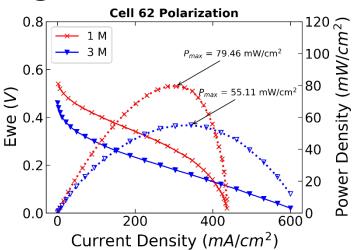
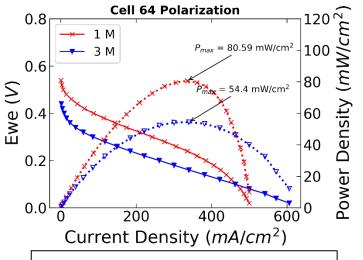
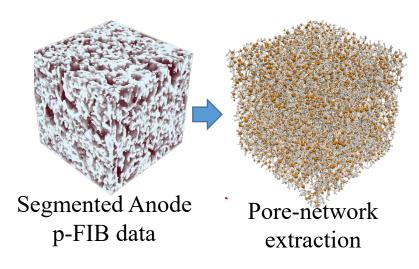




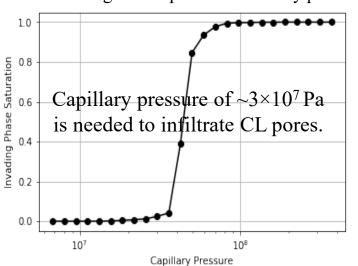
Figure 8. (a) EIS results and (b) equivalent circuit model

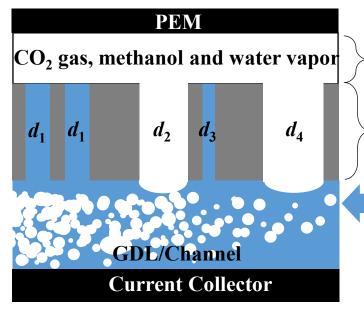
- L is due to the slowness of CO_{ads} coverage. It takes some time after a potential perturbation before the new steady state coverage is established and the corresponding current (leading to a phase delay)
- $\mathbf{R}_{\mathbf{0}}$ serves to modify the phase delay according to the reaction scheme
- **R**_{ct} is associated with the current response that occurs without change in coverage
- C_d is not only related to the double layer capacitance because values are typically $0.001-0.01~F/cm^2$. It is believed to be associated with the redistribution of charge at the anode

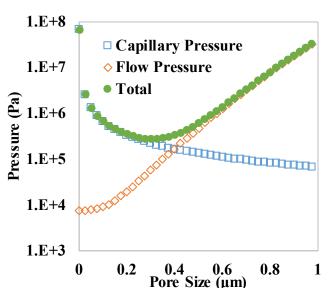
Operating conditions: 80 °C, 100%RH <u>Anode:</u> 1 M MeOH 2 mL/min <u>Cathode:</u> H₂ 200 mL/min <u>Cell Parameters:</u> <u>Anode:</u> 2 mg_{pgm}/cm² Alfa Aesar 75 wt% PtRu/C <u>Cathode:</u> 0.3 mg/cm² Fuel Cell Etc. Pt/C

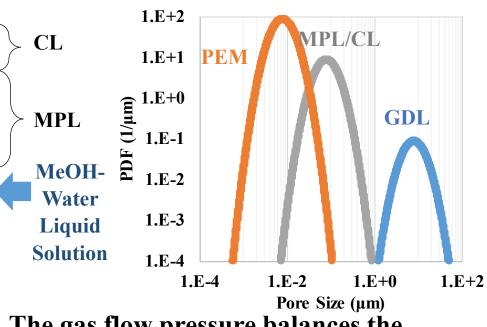


Differences in anode resistance were not significant enough to impact DMFC performance.

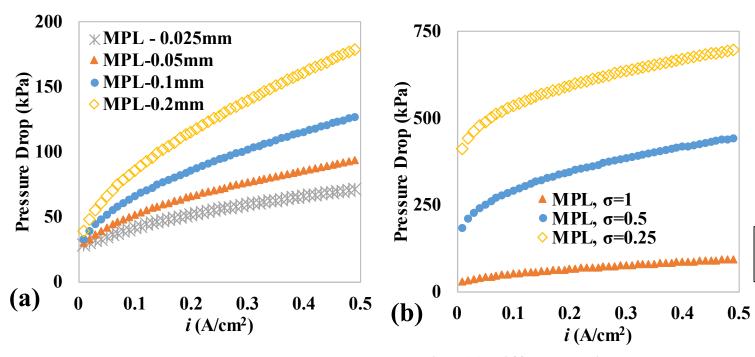



- Pore-Scale Liquid-Vapor Two-Phase DMFC Model



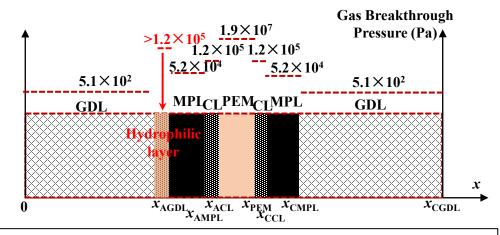

Gaussian blur with sigma = 0.4 Initial number of peaks: 25872

After trimming saddle points and nearby peaks: 9958

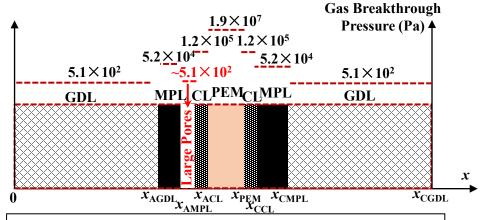

The gas flow pressure balances the capillary pressure and the flow resistance:

$$p_{g} = \frac{4 \cdot \sigma \cdot \cos \theta}{d} + \frac{150\mu}{d_{\text{avg}}^{2}} \frac{(1 - \varepsilon)^{2}}{\varepsilon^{3}} \times \frac{i}{6F} \times \frac{R_{u}T}{p_{g}} \times \frac{\delta}{(1 - \text{CDF}(d))}$$

The pore size distribution has significant impacts on the capillary pressure and liquid-vapor two-phase flow.



- Pore-Scale Liquid-Vapor Two-Phase DMFC Model



Total gas pressure drops through MPLs with (a) different thicknesses at the shape factor of 1.0 and (b) different shape factors at the thickness of 50 μ m.

Changing the pore size distribution and minimizing the micro cracks is more effective than changing the thickness in order to regulate the liquid and gas flow in MEAs.

The strongly hydrophilic layer can create additional resistance for gas flow and decrease the methanol crossover.

- Responses to Previous Year Reviewers' Comments

This project has NOT been previously reviewed at an AMR.

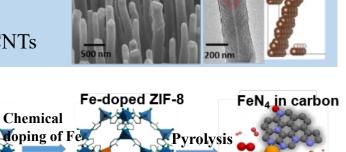
Collaboration and Coordination Team Members

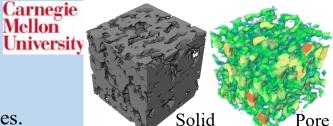
STATE

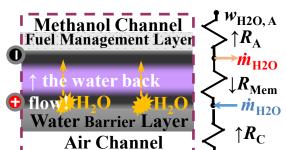
Sub: Jun Li (KSU) Anode Catalyst

- Sputter PtRu onto VACNFs;
- Spray coat commercial PtRu nanoparticles on VACNFs;
- Microwave-assisted synthesis of PtRu nanoparticles on CNFs/CNTs

Sub: Gang Wu (UB) Cathode PGM-free Catalyst

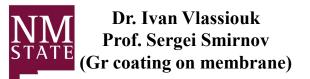

- Fe-N-C catalysts development via oxides doping;
- Dual-site FeCo-N-C catalyst;
- Methanol tolerance studies.

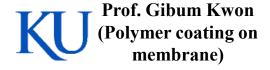

Sub: Shawn Litster (CMU) Electrode characterization


- Ionomer/Catalyst ratio;
- Optimized solvent to prepare the catalyst inks;
- Tomography of commercial electrodes and PGM-free electrodes.

Prime: Xianglin Li (KU) System integration and prototype development.

- MEA fabrication and testing;
- Fuel and water management;
- Liquid-vapor two-phase models;
- Technical and economic analyses of DMFCs.





′H2O, C

Research Collaboration

Prof. Jian Xie (CCM manufacture)

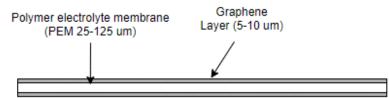
Remaining Challenges and Barriers

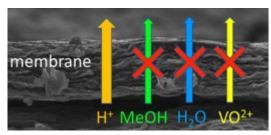
Challenge:

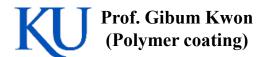
- Performance of customized anode catalysts in fuel cells;
- Production scale-up of customized catalysts for 50 cm² MEAs;
- Fuel management with highly concentrated methanol solutions or pure methanol;
- Development of accelerated stress test (AST) procedures for DMFC.

Planned Resolution:

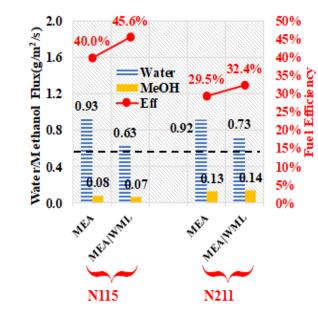
- Use half-cell tests to guide the selection, design and synthesis of catalysts and catalyst support materials.
- Explore different methods for catalyst deposition: sputtering, microwave-assisted synthesis, atomic layer deposition, etc.
- Understand pore-scale liquid-vapor two-phase transfer assisted by advanced imaging technologies (micro- and nano-CT) and model simulations.
- Develop DMFC's AST by modifying established AST protocols for hydrogen fuel cells.

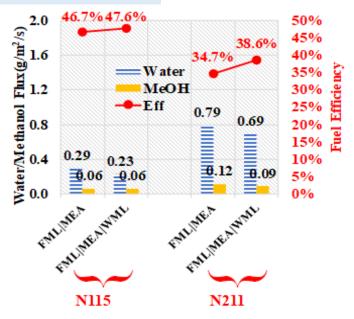

Proposed Future Work


Membranes with Extremely Low Water and Methanol Crossover



Dr. Ivan Vlassiouk Prof. Sergei Smirnov (Graphene coating)




We are also collaborating with Dr. Gibum Kown's lab at KU to develop Nafion membrane coated with fluorinated silica to engineer the surface characteristics.

Regulating Water and Methanol by Capillary Pressure

Methanol Channel
Fuel Management Layer
Membrane Electrode
Assembly
Water Management Layer
Air Channel

FML: Fuel Management Layer WML: Water Management Layer

Summary

2nd Budget Period Go/No-Go Decision Point

Single cell achieved the peak power density of \geq 250 mW/cm² with \leq 3.0 mg_{PGM}/cm² catalyst.

2nd Budget Period Accomplishments and Significant Findings

- 1) DMFC single cell achieved 252 mW/cm² peak power with 3.0 mgPGM/cm².
- The latest Fe-N-C catalysts delivered an $E_{1/2}$ of 0.912V and conveyed a current density of 160.2 mA/cm² at 0.8 V and peak power density of 558 mW/cm² at 80 °C and 150 KPa back pressure with H₂/air.
- 3) The Fe-N-C catalyst had $E_{1/2} > 0.80$ V after 30K potential cycling between 0.6 and 0.95 V.
- 4) The FIB-SEM images of anode electrode were transferred to the pore network model and pore-scale model to simulate liquid-vapor two-phase flow and guide the fuel cell component design.
- 5) A simple AST protocol to cycle the potential between 0.3 and 0.5V is proposed.
- 6) Analysis of technical and economic feasibility of DMFC as the power source of electric forklifts.
- 7) Customized PtRu/TiO₂/O-NCNTs showed higher activity than the best commercial anode catalysts in half-cell tests.
- 8) Experimentally measured the reaction order of vapor-feed MOR.

ACKNOWLEDGEMENT

DOE EERE: Energy Efficiency and Renewable Energy Fuel Cell Technologies Office (FCTO)

DOE Program Manager: Donna Ho

Project Team

Carnegie Mellon University

University of Kansas

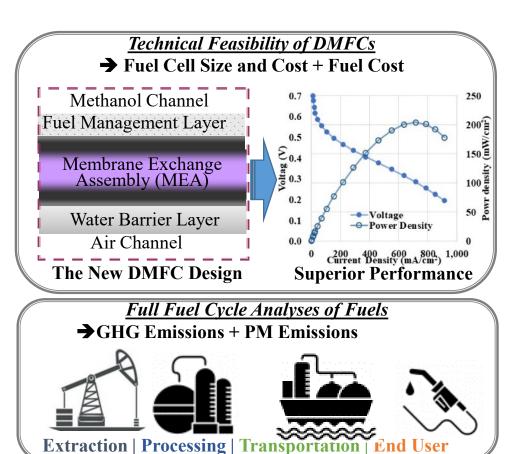
- Prof. Xianglin Li
- Nathaniel Metzger

University of Buffalo

- Prof. Gang Wu
- Dr. Qiurong Shi

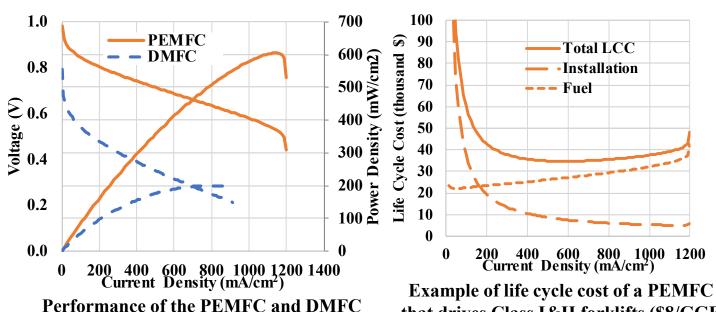
Kansas State University

- Prof. Jun Li
- Archana Sekar


Carnegie Melon University

- Prof. Shawn Lister
- Mohamed Abdelrahman

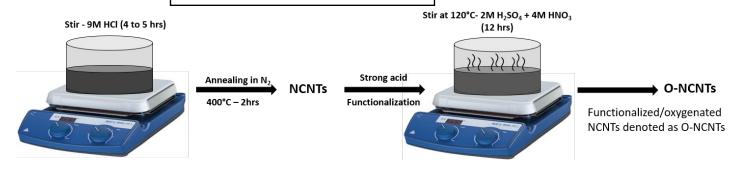
Technical Backup and Additional Information


Maximum 20 slides

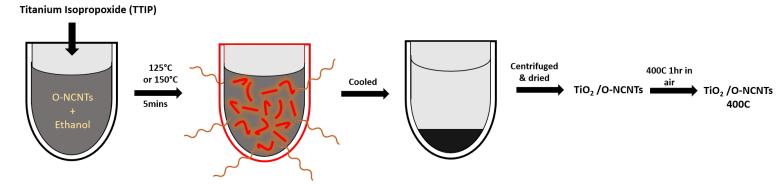
Technology Transfer Activities

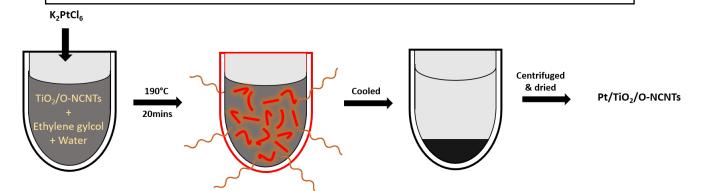
Technical, economic and environmental analyses of DMFCs as the power source for forklifts.

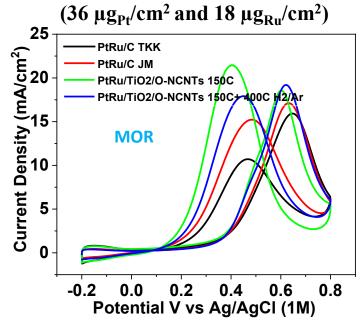
Parameters	PEMFC	
Average Power of Class I&II Forklifts (kW)	2.75	
Annual Energy Consumption of Class I&II Forklifts (MJ)	23,7	
Average Power of Class III Forklifts (kW)	0.5	-
Annual Energy Consumption of Class III Forklifts (MJ)	4,752	
Lite Time of the Fuel Cell (vears)	10)
Fuel Cell Cost (\$/kW)	1,868	3,772
Fuel Price (\$/GGE)	8 [4-22]	0.43
Energy Content of Fuel (MJ/kg)	120.0	22.0

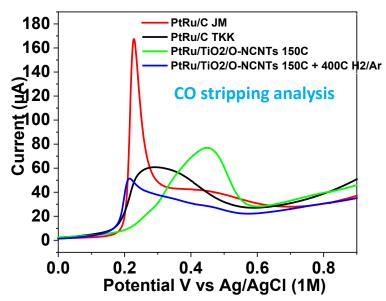

technologies used in the analyses.

Example of life cycle cost of a PEMFC that drives Class I&II forklifts (\$8/GGE hydrogen price, 10-year lifetime).

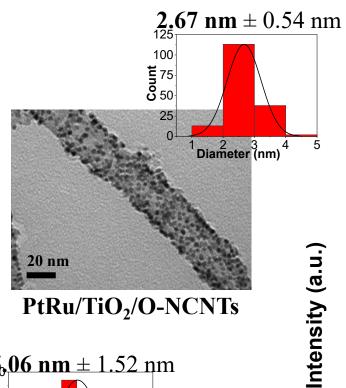

Technical Backup – Anode Catalyst Synthesis

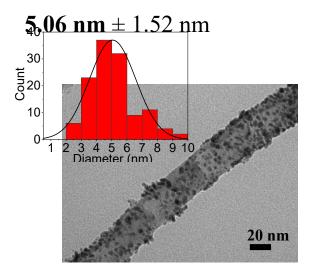

Step 1: NCNTs functionalization


Step 2: TiO₂ deposition on O-NCNTs by Microwave Assisted Synthesis

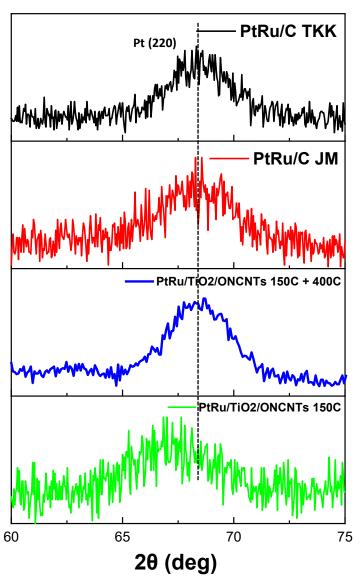


Step 3: Pt deposition on TiO₂/O-NCNTs by Microwave Assisted Synthesis

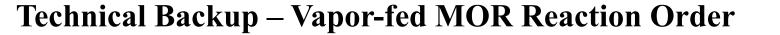

Half-Cell CV tests with 0.75 M Methanol



Technical Backup – Anode Catalyst Synthesis

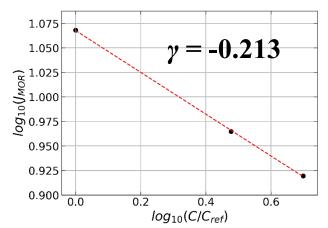


PtRu/TiO₂/O-NCNTs


PtRu/TiO₂/O-NCNTs 400C


Inference:

- The 400C annealed sample showed 2θ shifts in Pt diffraction planes which suggest that Ru has alloyed with Pt.
- Calculated the alloying degree in the annealed sample using Vegard's law.
- PtRu/TiO2/O-NCNTs 400C H2/Ar showed a significant shift in the 2θ at Pt (220) and Pt (311) plane.
- Alloying degree (or atomic fraction in alloy formation) was found to be 1.5:1, which is close to commercial PtRu alloy in JM/TKK.


Catalyst	X _{Pt}	X_{Ru}	Atomic fraction (Pt:Ru)
PtRu/TiO2/O-NCNTs	100 %	0 %	Only Pt (no alloy)
PtRu/TiO2/O-NCNTs 400C H2/Ar	44.5 %	55.5 %	1.5:1
PtRu/C TKK	55%	45%	~1:1
PtRu/C JM	56%	44%	~1: 1

Current increases slightly with lower MeOH concentrations Tafel slopes are consistent with an ideal two-electron rate determining step

The reaction is likely to be zeroorder. However, there may be some effects of methanol crossover.

The current density at 0.26 V vs. RHE

MEA with Alfa Aesar PtRu/C anode and JM Pt/C cathode Anode: vaporized methanol; Cathode: 200 mL/min hydrogen; 80°C.

Progress toward DOE Targets or Milestones

Go/No-Go Criteria at the end of 2nd Budge Period (4/01/2020 to 3/31/2021) Fabricate and test MEAs to achieve 250 mW/cm² peak power density with ≤ 3 mgPGM/cm²

Characteristic	Units	2 nd BP Targets	Project Status
Peak Power Density	mW/cm^2	250	252
Catalyst Loading	mg_{PGM}/cm^2	3	3
MEA Size	cm^2	50	5
Temperature	$^{\mathrm{o}}\mathrm{C}$	~80	99
Pressure	kPa	~100	300
Stoichiometric ratio, Methanol	/	≤ 2.0	1.0
Stoichiometric ratio, Air	/	≤3.0	34.8

Publications and Presentations

- 1. Qiurong Shi, Yanghua He, Xiaowan Bai, Maoyu Wang, David A Cullen, Macros Lucero, Xunhua Zhao, Karren L. More, Hua Zhou, Zhenxing Feng, Yuanyue Liu, Gang Wu. "Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells", *Energy Environmental Science*, 13 (2020) 3544-3555.
- 2. Nathaniel Metzger, Archana Sekar, Jun Li, Xianglin Li. "Understanding Carbon Dioxide Transfer in Direct Methanol Fuel Cells Using a Pore-Scale Model", *Journal of Electrochemical Energy Conversion and Storage*, (2021) JEECS-20-1185.
- 3. Xianglin Li, Zheng Miao, Lauren Marten, Isaac Blankenau. "Experimental measurements of fuel and water crossover in an active DMFC", *International Journal of Hydrogen Energy*, 46 (**2021**) 4437-4446.
- 4. Nathaniel Metzger, Samuel Hong, Sangwon Kang, Jianan Zheng, Tylor Bachet, Kelvin Feuerborn, Thomas DeAgostino, Xianglin Li. "Technical and Economic Analysis of Fuel Cells for Material Handling Applications", *Renewable and Sustainable Energy Reviews*, **Under Review**.
- 5. Zheng Miao, Zihang Li, Ya-Ling He, Jinliang Xu, Xianglin Li, "A Liquid-Vapor Two-Phase Model of Direct Methanol Fuel Cells with PGM-Free Cathode Catalyst", *Journal of Electrochemical Energy Conversion and Storage*, **Under Review**.