

Novel Fluorinated Ionomer for PEM Fuel Cells

Hui Xu (PI) and Natalia Macauley (Presenter)

Giner, Inc., Newton, MA

DOE project award DE-SC0018597

June 7-11, 2021

2021 DOE H₂ and Fuel Cell Annual Merit Review and Peer Evaluation Meeting

Project ID # FC328

Project Goal

Develop high oxygen permeability ionomer (HOPI) for PEM fuel cell cathodes to reduce local oxygen transport loss, by engineering the polymer backbone to contain molecules with more open space available for gas transport

- Improve O₂ permeability by 5x compared to Nafion® Baseline
- Increase polymerization scale by 10x per batch
- Evaluate fuel cell performance, durability and local transport resistance

Outcomes: introduce alternative ionomer materials to the market, that enable higher power densities compared to state-of-the-art ionomers

Project Overview

Timeline

- Project Start Date: 5/28/2019
- Project End Date: 5/27/2021

Budget

- Total Project Value:\$ 999,595
- Funds Spent: \$867,702* As of 04/01/2021

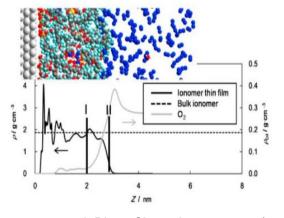
Barriers Addressed

 PEM fuel cell transport loss at low Pt loadings and high-power densities

Collaborators

- Project Lead: Giner, Inc.
 - Shirley Zhong and Natalia Macauley
- Subcontractors:
 - Compact Membrane Systems: Dr. Dan Lousenberg
 - University of Connecticut: Prof. Jasna Jankovic, Sara Pedram
 - University of California Irvine: Dr. Iryna Zenyuk, Yongzhen Qi, Andrea Perego

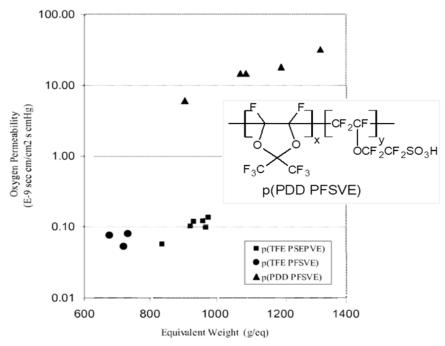

Relevance


GINER

Objective: Maximize catalyst performance by synthesizing and incorporating high oxygen permeability ionomer (HOPI) in fuel cell cathodes and meet 2020 DOE HFTO MYRDD Catalyst and heavy duty MEA targets.

CHARACTERISTIC	UNITS	2020 TARGETS
Mass activity	A/mg PGM @ 900 mV _{IR-free}	0.44
Loss in initial catalytic activity	% mass activity loss	<40
Loss in performance at 0.8 A/cm ²	mV	<30
Loss in performance at 1.5 A/cm ²	mV	<30
MEA performance @ 0.800 V	mA/cm² _{geo}	≥300
MEA performance @ rated power (150 kPa _{abs})	mW/cm² _{geo}	≥1000

- High local O₂ transport resistance occurs due to thin ionomer film surrounding Pt particles
- High local O₂ transport resistance leads to low O₂ concentration on Pt surface thus inferior fuel cell performance


J. Phys. Chem. Lett. 7, 1127 (2016) Macromolecules, 45, 7920 (2012)

GOAL: Reduce local oxygen transport resistance by increasing ionomer permeability in cathode

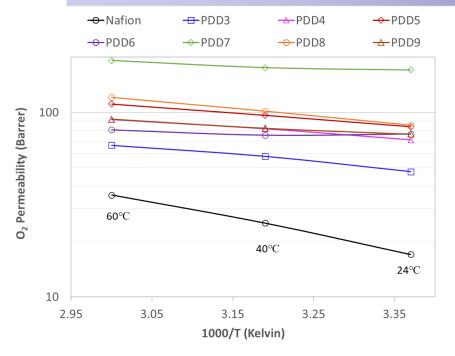
Approach

Dry O₂ permeability of PDD copolymers vs. p(TFE PSEPVE) "Nafion®" or p(TFE PFSVE) "Aquivion®"

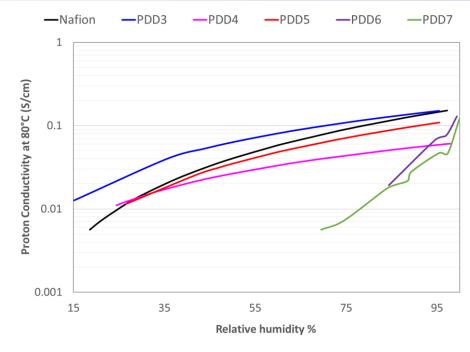
United States Patent Application 20130245219 A1

- **lonomer development and characterization**: Synthesize HOPIs with varied EW, and molecular weight and identify best composition for fuel cell performance. Characterize gas permeability and conductivity
- Electrode integration: Vary the solid to liquid content, ionomer to carbon ratio; optimize mixing and coating method. Use rheology, laser diffraction particle size analysis, and zeta potential to monitor ink properties from batch to batch
- MEA testing: Optimize MEA fabrication, membrane, gas diffusion layer, flow field, cell assembly (compression), conditioning and recovery protocols; measure local O₂ resistance
- Fluoro-ionomers with perfluoro-2,2-dimethyl-1,3-dioxole (PDD) have two orders of magnitude higher dry O₂
 permeability from increased free volume imparted by the PDD repeat unit
- Develop next generation of fluorinated ionomers for PEM fuel cell cathodes with reduced local O₂ transport losses:
 - Highly conductive amorphous ionomers with higher free volume than Nafion®
 - Enhanced O₂ permeance to the PGM catalyst will improve overall performance

Accomplishment: HOPI Synthesis


- Copolymerization of PDD, PFSVE (or PSEPVE), and a ter-monomer (M)
- Synthesized ionomers with varied composition, EW, and molecular weight
- Scale up the most promising high-PDD content ionomer, PDD4
- Transitioned to semi-batch polymerization for scale up of best ionomer
- Note: PDD8 and PDD9 are replicas of PDD4

lonomer	Composition	PDD content (mole%)	EW (g/mole)	Intrinsic Viscosity (dL/g)	O₂ Permeability (Barrer)	
					24°C	60°C
PDD1	PDD/PSEPVE/M	24 – 30	847	0.53	22	41
PDD2	PDD/PFSVE/M	30 – 36	864	0.51	12	27
PDD3	PDD/PFSVE/M	62 – 68	754	0.20	48	66
PDD4	PDD/PFSVE/M	67 – 73	863	0.31	71	91
PDD5	PDD/PFSVE/M	67 – 73	859	0.31	84	111
PDD6	PDD/PFSVE/M	70 – 76	953	0.20	77	81
PDD7	PDD/PFSVE/M	70 – 76	967	0.38	170	191
PDD8	PDD/PFSVE/M	67 – 73	789	0.28	85	121
PDD9	PDD/PFSVE/M	67 – 73	836	0.18	75	93
Nafion™ (control)	PSEPVE/TFE	0	930	N/A	17	36

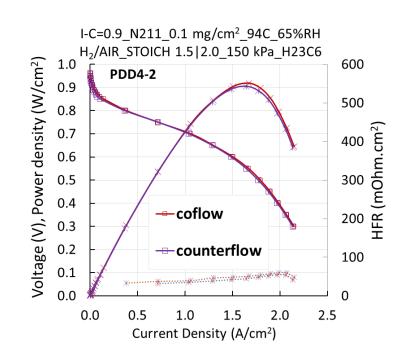


O₂ Permeability and Proton Conductivity

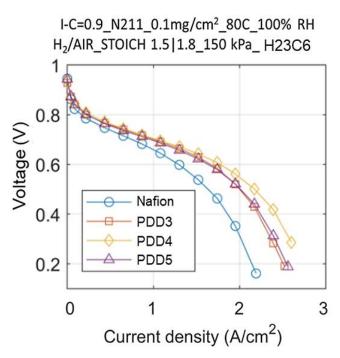


- PDD7 HOPI displays 10x the permeability of Nafion due to high PDD content
- PDD3 has highest conductivity due to low EW
- PDD6 and 7 may have high variability in composition leading to immeasurable conductivity at low RH
- ✓ Q1: CMS proton conductivity at 80 °C: 20 mS/cm at 50% RH, 40 mS/cm at 70% RH, and 90 mS/cm at 98% RH
- ✓ Q2: CMS Gas permeability: at least 4X increase compared to Nafion 1100EW ionomer measured under same conditions
- CMS Gas permeability: at least 5X increase compared to Nafion 1100EW ionomer measured under same conditions

Accomplishment: Catalyst Ink Optimization



- TKK TEC36F32 30 wt.% PtCo catalyst in Water / Alcohol Solvent with I/C of 0.8, 0.9, 1
- Other catalysts evaluated: UMICORE Elyst Pt30 0690, TKK TEC36E32, TEC36E52
- Ink characterization with **rheology** for viscosity and **laser diffraction** for catalyst agglomerate size
- Successfully coated homogenous catalyst layers on Teflon or GDL using Meyer rod method
- Target loading of 0.1 mg/cm² Pt at cathode + Commercial 0.2 mg/cm² Pt anode + Hot pressed to N211 membrane

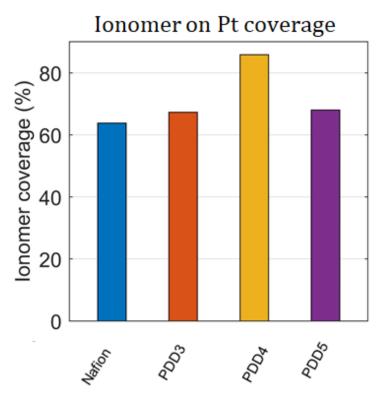

Accomplishment: MEA Performance

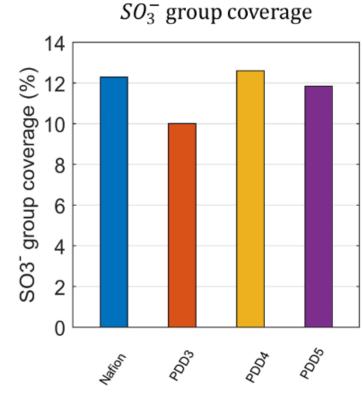
3-serpentine flow field

I-C=0.9 N211 0.1mg/cm² 80C 100% RH H₂/AIR_STOICH 1.5 | 1.8 150 kPa 22 BB SGL 600 500 0.8 Voltage (V) HFR (mOhm.cm² 400 --- PDD 3 0.6 PDD 4 300 →PDD 5 --- PDD 6 200 --- PDD 7 0.2 100 -- Nafion ACCOUNT OF THE PARTY OF THE PAR 0 0.5 1.5 0 Current density (A/cm²)

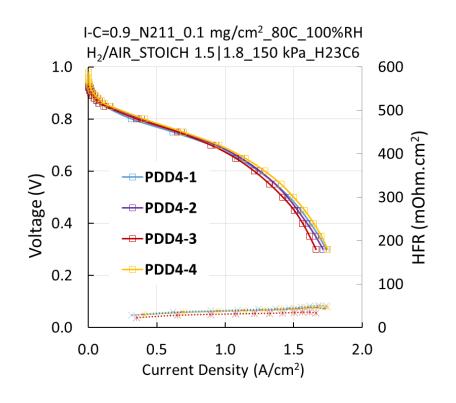
14-serpentine flow field

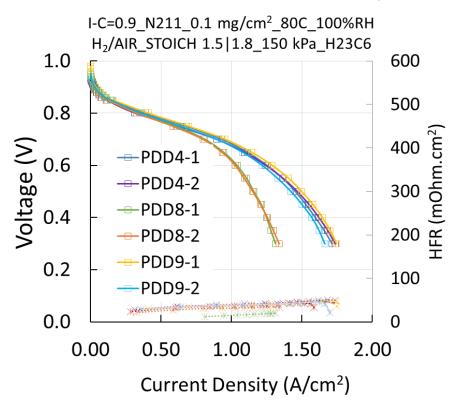
- MEAs using PDD3,4,5 outperform Nafion in the high current density region due to high permeability
- Consistent trend observed with different flow fields, 3- vs. 14-channel, GDLs and operating conditions
- OPTIMAL PDD content and EW identified in MEA PDD4: 67 73 mole% and 836EW
- No difference in co-flow vs. counterflow operation at heavy duty operating conditions


[✓] **Q4:** Fuel Cell performance: voltage improved by 100 mV at 2.5 A/cm²


[✓] **Q5:** Fuel Cell performance: voltage improved by 150 mV at 2.5 A/cm²

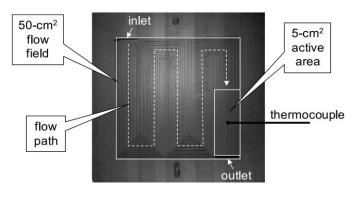
lonomer and SO₃⁻ group Coverage

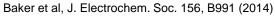

Journal of Electroanalytical Chemistry, 708, 87-94 (2013)

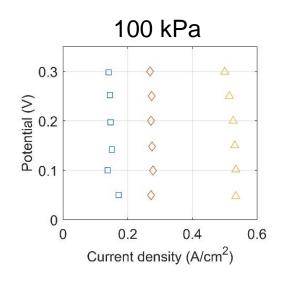

- PDD4 has highest ionomer and SO₃⁻ coverage
- Indicates good dispersion of ionomer in catalyst layer

PDD4 Repeatability

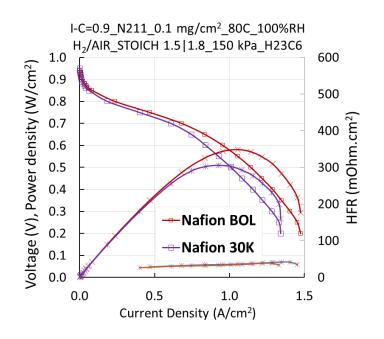
3-serpentine flow field


- ☐ Good repeatability in performance for multiple MEAs with PDD4 cathodes
- □ PDD8 and PDD9 are replicas of PDD4: both have the same PDD content but different EW
- □ Successfully repeated PDD4's performance with newly synthesized ionomer PDD9

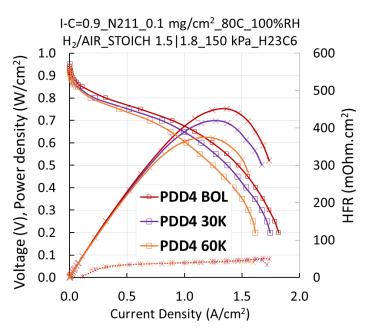



Accomplishment: Local O₂ Transport Resistance

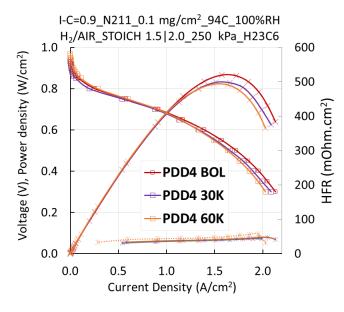
5cm² GM Differential cell



PtCo/HSC 75% RH	RO ₂ Local NF (s/cm)
Nafion	0.079
PDD3	0.157
PDD4	0.049
PDD5	0.083
Pt/Vulcan 90% RH	
Nafion	0.209
PDD4	0.091


- A limiting current approach was used to measure the transport resistance: $R_T = R_{ch} + R_{DM} + R_{MPL} + R_{other}$
- 1%, 2% and 4% O₂ in He and variety in back pressures (100 kPa, 125 kPa, 150 kPa, 200 kPa)
- Current densities at 0.1-0.2 V were used for local oxygen transport analysis
- Improved performance of PDD4 cathode is partially due to 2x lower local RO₂ than Nafion
- Bulky PDD molecule creates void space for O₂ transport

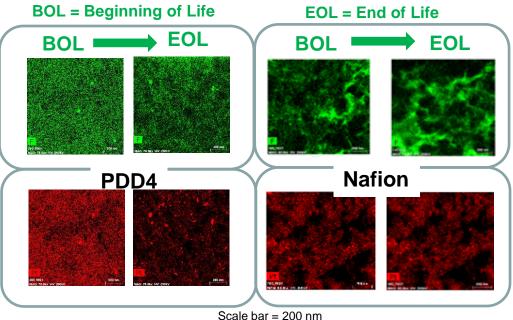
Accomplishment: Improved Durability



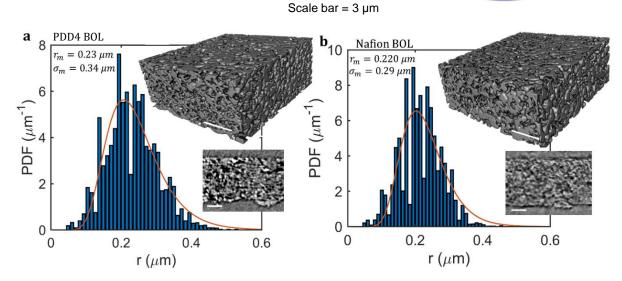
PDD4

- 30K-60K Square Wave AST (0.6 0.95 V) was used to degrade MEAs
- Previously PDD4 MEA displayed best durability among PDD MEAs
 - Highly durable at heavy duty operating conditions: 94°C, 65% RH, 250kPa
- Fluoride Emission Rate (FER) measured with hydrocarbon membrane (Permion)
 - · Isolated fluoride from the ionomer, and eliminated membrane fluoride
- PDD4 MEA displayed a visibly lower FER than Nafion

PDD4, Heavy Duty Condition



80°C, 100%RH @ 30K	Nafion	PDD4
0.8 A/cm ² Loss (mV)	40	16
MA Loss (%)	31	31
Anode FER (µg/h-cm²)	0.0047	0.0012
Cathode FER (µg/h-cm²)	0.0034	0.0022



TEM and Nano CT

Sample ID	Primary porosity	Secondary porosity	Pt/Co Atomic	Average Particle size (nm)	Co count
PDD4 BOL	25%	64%	8.4	3.98±1.25	0.007
PDD4 EOL	36%	47%	16.9	4.43±1.04 (+11%)	0.004 (-43%)
Nafion BOL	39%	45%	6.3	6.25±1.86	0.033
Nafion EOL	39%	44%	19.5	9.04±3.93 (+45%)	0.015 (-53%)

- Ionomer and Pt distributions become more agglomerated and non-uniform at EOL
- Nation displays more visible agglomeration at BOL
- PDD4 shows the least agglomeration at BOL and EOL
- Electrode PDD4 has the smallest particle size growth
- Less cobalt leached from PDD4 cathode Pt/Co atomic ratio
- Nano x-ray CT showed slightly higher porosity of a) PDD4 vs.
 b) Nafion at BOL

Responses to Previous Year Reviewers' Comments

This project was not reviewed in 2020

Collaboration and Coordination

- CMS (subcontractor): Dr. Dan Lousenberg. Synthesized HOPI samples for MEA design and testing; also provides ionomer permeability data
- **UCI** (subcontractor): **Prof. Iryna Zenyuk.** Performed ionomer and SO₃⁻ group coverage, some O₂ transport resistance and Nanoscale Computer Tomography
- UConn (subcontractor): Prof. Jasna Jankovic. Provided microstructure analysis with SEM and TEM: ionomer, Pt, Co distributions and particle size
- **General Motors**: Dr. Craig Gittleman. Provided flow field to measure local O₂ transport resistance

Summary

- \Box Successfully synthesized the first of its kind HOPIs with 2-10x higher O_2 permeability than Nafion
- HOPIs demonstrated pronounced fuel cell performance and durability improvement compared to Nafion
 - Met DOE Mass Activity and Durability targets
- ☐ Successfully replicated best performance demonstrating repeatability in HOPI polymerization process
- □ PDD HOPIs show 2x lower local oxygen transport resistance than Nafion
- □ PDD HOPIs in catalyst layers have more SO₃- groups in contact with Pt than Nafion
- ☐ Microstructural analysis in agreement with performance and durability results
 - Porosity changes, Pt and Co loss, particle size growth

Future Direction

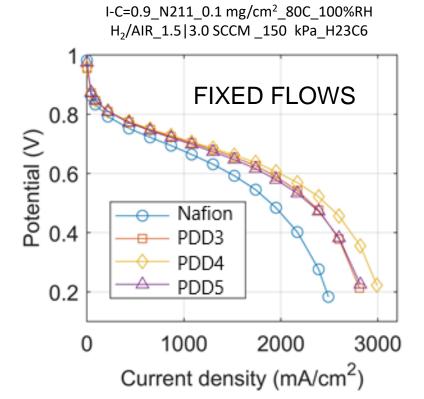
- ☐ Scale up PDD4 polymerization process
 - Transition from batch to semi-batch process
- **☐** MEA performance Improvement
 - Use higher quality membranes from 3M and Gore
 - 15 µm supported membrane with doped Ce
 - Adopt advanced flow field and GDL
- **☐** Understanding ionomer durability
 - NMR after Fenton's test to identify ionomer degradation mechanism
 - H₂O₂ vapor cell testing
- Evaluate MEAs by OEMs and FC-PAD
 - Send 50-100 cm² MEAs with best ionomer
 - Extensive and harsh FC vehicle operation conditions (Transients, Sub-freezing operations, heavy-duty applications and corresponding AST)
 - FC-PAD for ionomer/MEA evaluation

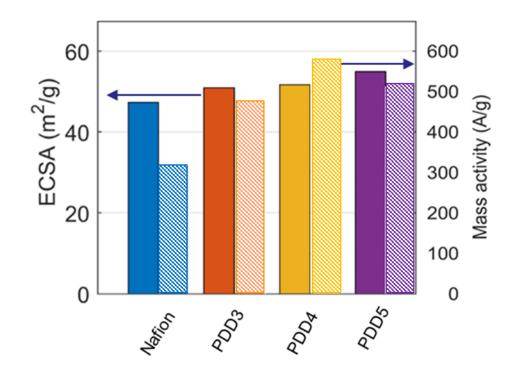
Any proposed future work is subject to change based on funding levels

Acknowledgments

- ☐ Financial support from DOE SBIR/STTR Program under award DE-SC001859
- ☐ Technical Manager
 - Dr. Dimitrios Papageorgopoulos
- □ Collaborators
 - Jasna Jankovic (Univ. of Connecticut)
 - Iryna Zenyuk (Univ. of California, Irvine)
 - Dan Lousenberg (CMS)
 - General Motors (flow field to measure local O₂ transport resistance)

Technical Backup and Additional Information


Technology Transfer Activities



- ☐ Secure multiple supports from potential ionomer users
 - GM
 - Nikola
 - Ballard
 - Plug Power
- ☐ License ionomer technology from CMS to provide products for fuel cell and other community
- Utilize ionomer for Giner's commercial products
- □ Collaboration with commercial coating company to explore roll-to-roll (R2R) production of PDD based catalyst layers
 - 0.2 mg/cm² Pt for heavy duty vehicles

PDD vs Nafion Performance and ECSA

□ 14-serpentine flow field with fixed flows achieves 1.2 W/cm²

Progress toward DOE Targets

■ Met the following DOE 2020 performance and durability targets

DOE Fuel Cell Electrocatalyst and MEA Technical Targets

CHARACTERISTIC	UNITS	PROJECT STATUS	2020 TARGETS	
Mass activity	A/mg PGM @ 900 mV _{IR-free}	1.15	0.44	
Loss in initial catalytic activity	% mass activity loss	11	<40	
Loss in performance at 0.8 A/cm ²	mV	5	<30	
Loss in performance at 1.5 A/cm ²	mV	50	<30	
MEA performance	mA/cm² _{geo} @ 800 mV	315	≥300	
MEA performance	mW/cm² _{geo} @ 668 mV	940	≥1000	

□ Some targets can be achieved using state-of-the-art PEMs from Gore

Publications and Presentations

- ☐ ECS Prime 2020 Conference Presentation :
- N. Macauley, M. Spinetta, S. Zhong, F. Yang, D. Lousenberg, J. Jankovic, S. Pedram, I. Zenyuk, Y. Qi, H. Xu, High Oxygen Permeability Novel Fluorinated Ionomers for Proton Exchange Membrane Fuel Cells, Session I01B-2219, 6 October 2020, 20:00 20:20
- Manuscript submission to Nature Energy:
- N. Macauley, M. Spinetta, S. Zhong, F. Yang, D. Lousenberg, W. Judge, V. Nikitin, A. Perego, Y. Qi, S. Pedram, J. Jankovic, I. V. Zenyuk, H. Xu, High Oxygen Permeability Novel Fluorinated Ionomers for Proton Exchange Membrane Fuel Cells