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Project Goal

Improve the lifetime efficiency of membrane electrode assemblies
(MEAs) in heavy duty (HD) fuel cell systems by developing
membranes with optimized architectures which incorporate thermally-
stable ionomer chemistries and immobilized radial scavengers

Realizing the advances proposed in this work can:
- Reduce lifetime operational expenses of HD fuel cell systems
- Improve their commercial viability to displace diesel energy sources



Project Overview

Timeline
(anticipated)

* Project Start: Q3 2021
* Project End: Q3 2024

Budget
% Total project budget: $1,281,134
> Total Federal Share: $998,376
> Total Recipient Share: $282,758

> Total DOE funds spent*: $0
* As of 4/12/2021

Barriers
¢ Durability
s Performance
s Cost

Partners

s The Chemours Company

» lonomer synthesis
» Membrane preparation
» Scale-up

< M2FCT Consortium

» lonomer/membrane characterization
» AST development
» Post-mortem characterization



Gas Crossover and Conductivity Loss

Relevance

Increased crossover can lead to a cascade of effects which reduce lifetime efficiency

Permeance (10" mol/cm-s-bar)

1. MSchalenbach et al.,J. Phys. Chem, 119, 25145-25155 (2015).
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Conductivity and crossover should be maintained at or
better than SOA levels in an HD-specific membrane design

2. M Zhao, et al., Electrochim Acta153, 254-262 (2015).

3. W. Liu and D. Zuckerbrod, J. Electrochem Soc.152, A1165-A1170 (2005).
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Challenges in High Temp. HD Membranes Relevance

Increased iron contamination Increased radical scavenger migration
(especially during HD lifetime requirement)

Decreased PFSA properties!']
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Project Targets

Relevance

Metric SOA status | Project target
95°C, 36% RH 0.08al 0.1
Area specific resistance [Q-cm?]
80°C, 100% RH 0.016!l 0.02
Gas crossover [mA/cm?] 80°C, 100% RH 21a] 2
95°C, 36% RH ~6.2x10-10[0] 3.1x10-10
Radical scavenger mobility [m?/Vs]
80°C, 100% RH 1.9x10-8 [] 9.5x10-°
Membrane chemical/mechanical AST lifetimelc! [h] >660L! 1000
Refined HD membrane AST lifetime [h] n/a TBD

[a] Nafion™ NC700 data from Chemours

[b] 5% Ce3*in Nafion™ NR-211 from A. M. Baker, et al., ECS Trans., 92, 429-438 (2019).

[c] Table P.5, U.S. DOE MYRDD Plan, Section 3.4 Fuel Cells, p. 50, (2016)




Project Workflow and Collaborations

_ ‘ Chemours-
Monomer/polymer synthesis
Reinforced membrane preparation

. NINIKOLA
Membrane evaluation
MEA integration and evaluation

Polymer & membrane characterization
Membrane AST development

E'M""""" SIPALTS Lsu
J.S. DEPARTMENT OF ENERGY

(no cost partner)

TRUCK

Collaboration

 Develop optimized membrane for HD applications

Refine membrane AST for HD conditions




Project Participants and Roles Collaboration

Nikola (prime)
Andrew Baker
John Slack
BaharehTavakoli
VivekMurthi

Chemours (sub-recipient)
e Andrew Park

» Allen Sievert

* Todd Sayler

Louisiana State University

(no cost partner)
e Chris Arges

M2FCT Consortium

Measure radical scavenger migration rates usingpdmp
Evaluate membrane conductivity and crossover situ
Prepare MEAs using standard M2FCT electrodes

Analyze MEAs using representative testing

Synthesize monomers (HI-PFSA novel immobilizer)
Synthesize polymers containing various compositions ofadvanced monomers
Prepare membranes of different composition (t, EW, additive)

Measure solubility of CeMOx nanoparticles (NPs)
Quantify effectiveness ofradical scavengers and membranes containing them
/n situand in operando

Develop and refine HD-specific membrane AST (all)

Model voltage loss breakdown &tradeoffs (NREL & ANL)

Evaluate ofnanoparticle morphology and surface chemistry (ORNL)
Perform fundamental polymer/membrane characterization (LBNL & LANL)



Optimizing Membrane Composition Approach
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HT-PFSA is more crystalline than LSCs
at lower equivalent weights (EWs)!
Lower feasible EW bound for HT-PFSA

1. A. Kusoglu and A. Z. Weber, Chem. Rev., 117, 987-1104 (2017).

Evaluate and model effects of
parameters on durability

 Thickness

« EW

« Side chain

« Additive type and %

Advanced reinforcements

lonomer chemistry and compositional
changes will be evaluated in MEAs
under representative HD test
protocols and modeled to maximize
lifetime efficiency




Representative HD Test Protocols Approach
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» Hybridization strategy & control logic
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» Road/vehicle parameters (grade, GVW, CdA)

Representative HD Drive Cycle Refined HD Membrane AST
A . . .
(In conjunction with M2FCT)
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Smoothed to eliminate transient current spikes

Filtered to capture relevant voltage sweeps
» Incorporates voltage clipping

» Stressors balanced and accelerated

* Humidity cycling induced with current cycles
Potential and water gradients present
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1. NREL DriveCAT - Chassis Dynamometer Drive Cycles. (2018)
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Radical Scavenger Immobilization

Approach

Metal-doped ceria (CeMOx) NPs Polymeric immobilization
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(synthetic scheme identified by Chemours)

Necessity to evaluate degree of migration reduction and radical scavenging
efficacy in situ in membranes containing proposed immobilization schemes
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Measuring Radical Scavenger Migration Rate S
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Measuring Radical Scavenger Efficacy
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Fluorescence spectroscopy can be used to quantify
the radical scavenging efficacy of proposed
immobilization schemes both ex situ and in operando

Prabhakaran, C. G. Arges, and V. Ramani, Proc. Natl. Acad. Sci. U. S. A., 109, 1029-34 (2012).
Prabhakaran, C. G. Arges, and V. Ramani, Phys. Chem. Chem. Phys., 15, 18965-18972 (2013).
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Approach
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Accomplishments and Progress

This project was not reviewed last year and has
an anticipated start date of Q3 2021

Progress




Advantages of the Proposed Approach I

. Membrane parameters optimized specifically for HD FC trucks

to maximize lifetime efficiency in long haul applications

. Two-pronged approach to radical scavenger stabilization

mitigates risk associated with new polymer development

. Analysis of CeMOx surface chemistry and morphology can

reveal mechanisms of solubility resistance and peroxide/radical
scavenging

- Novel monomer may enable more optimal localization of radical

scavengers and could be tailored to enable in-plane variations (e.g.
near wet outlets) while mitigating performance losses



Milestones and Decision Points Z Ll DLl

Selected milestones and expected results (Q1-4):
Synthesize 5 g of novel radical scavenger immobilization monomer

Measure performance and durability of membranes containing HT-
PFSA ionomer

Evaluate ex situ radical scavenger migration in membranes
containing metal-doped ceria (CeMOx)

Go/No-Go Decision Point (Q6): Demonstrate a reinforced membrane with
HT-PFSA that exhibits an area specific resistance of <0.1 Q-cm? at 95°C, 36% RH
and <0.02 Q-cm? at 80°C, 100% RH while maintaining a gas crossover of <2
mA/cm?.



Anticipated Challenges Future Work

Feasibility of proposed
monomer and its
processibility

Effectiveness of
immobilization during
polarization

Effectiveness of radical
scavenging in
immobilized systems

Synthetic scheme identified by Chemours which leverages
their extensive monomer library

Optimize monomer % in terpolymer

X-ray fluorescence will be used to intermittently measure
in-plane location of radical scavenger

Impedance spectroscopy will be used to intermittently
measure changes in cathode CL ionic resistance

Resistance to water gradients expected to be higher

The radical scavenging rate will be quantified both in situ
and in operando

The active group in the novel monomer may be tuned to
maximize scavenging



Summary

Objective: Fabricate a membrane with increased performance and
durability at high temperatures

Relevance: Directly increase the performance and durability of MEAs in
PEM fuel cell systems in order to reduce the overall costs of HD operation

Approach: Maximize lifetime efficiency by developing an HD-specific
architecture containing advanced reinforcements, thermally-stable
lonomers, and immobilized radical scavengers

Accomplishments: The anticipated start date of the project is Q3 2021



Technical Backup Slides
and Additional hformation
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Tech Transfer Activities

Patents: n/a

Tech-to-market activities: Commercialization of membrane technology is
anticipated if proposed advances are realized

Future/Additional Funding: n/a
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Progress Towards DOE

Targets

CHARACTERISTIC UNITS 2015 STATUS 2020 TARGETS
Maximum oxygen cross-over 2 mA/cm? 2.4 2
Maximum hydrogen cross-over @ mA/cm? 1.1 2
Area specific proton resistance at:

Maximum operating temperature and water partial 2 0.072

pressures from 40-80 kPa ohm cm (120°C, 40 kPa) 0.02

80°C and water partial pressures from 25-45 kPa ohm cm? 0.027 (25 kPa) 0.02

30°C and water partial pressures up to 4 kPa ohm cm? 0.027 (4 kPa) 0.03

-20°C ohm cm? 0.1 0.2
Maximum operating temperature °C 120 120
Minimum electrical resistance ohm cm? >5,600 1,000
Cost $/m? 17 20
Durability

Mechanical Cycles* 23,000 20,000

Chemical Cycles* 742 >500

Combined chemical/mechanical Cycles* - 20,000

*=>15 mA/cm? crossover or >20% loss in OCV

Objective: meet all 2020 DOE membrane technical targets and project targets specific

to high T, HD systems

A\ X4
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