Microwave Catalysis for Process Intensified Modular Production of Carbon Nanomaterials from Natural Gas

P.I. John Hu
West Virginia University

Partner Institutes:

Pacific Northwest National Laboratory
North Carolina State University
H-Quest Vanguard, Inc.
C4-MCP
SolCalGas

June 8, 2021

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Goal

The objective of the project is to develop a novel, low-cost process intensified modular process to directly convert flare gas or stranded gas to carbon nanomaterials and co-product hydrogen (H₂) with high conversion, selectivity, and stability. The proposed project is based on a patented technology for one-step conversion of natural gas to carbon nanotubes (CNTs) and carbon fibers (CNFs) without emitting carbon dioxide:

$$CH_4 \rightarrow H_2 + C$$
 (CNT, Carbon Fibers)

Major focus:

- Process intensification at modular scales with the objective of deployment at flare gas location.
- Demonstrate the modular unit operation having a large turndown ratio which can operate under varying feed rate and composition.

Expected Outcomes/Key Deliverables

- □ Electromagnetic sensitive catalyst development, synthesis, scale up.
- ☐ Microwave pilot reactor design and performance test at capacity of 2-5 kg/day.
- ☐ Modular component design, fabrication and pilot test for 100 hours
- □Commercial design flowsheet, Technoeconomic analysis.
- ☐ Technology-to-market strategy, plan, and commercialization.

Overview

Timeline

Project Stat Date: 03/20/2020

Project End Date: 03/19/2023

Budget

Total Project Budget: \$3,791,000

Total Recipient Share: \$ 791,221

Total DOE Funds: \$3,000,000

Barrier

- ☐ Catalyst stability
- ☐ Control the quality of CNTs/CNFs, crystallinity,
 - metal free
- ☐ Separation of catalyst-CNTs and CNFs
- ☐ Energy efficiency

Partner

Pacific Northwest National Laboratory
North Carolina State University

North Carolina State University

H-Quest Vanguard, Inc.

C4-MCP

SolCalGas

Relevance and Impact

Scientific and Technical Impact

The project advance both basic and applied fossil energy research. Understanding the reaction mechanism at interface of catalyst-methane molecule under microwave irradiation is important for basic fossil energy research.

Economic Impact

In the stranded gas location where pipeline is not available, distributed production and shipping solid carbon by truck and rail are an economically feasible. CNTs/CNFs are high-value products used as composite, fibers, electrode for electric arc steelmaking (needle coke replacement), polymers, plastics, and batteries.

Environmental Impact

Different from gas combustion for electricity generation, microwave pyrolysis creates much less CO₂ and pollutants by converting carbon in the natural gas into solid carbons. It reduces the volume of flared gas.

Approach-Microwave Catalytic Process

The development of process intensified modular systems provides a route for the direct conversion of flaring gas into value-added products. Modular systems are easily deployed and transported to remote locations.

Advantages of using MW heating

- Volumetric heating
- Selective material heating
- Rapid heating

- Non-contact heating
- Quick start-up and stopping

Natural gas flaring, venting up in Texas

Approach: Overcome the Challenges

The proposed technology is based on microwave-enhanced, multifunctional catalytic system to *directly* convert the light components of stranded natural gas.

Approach-Demonstration at Microwave Plasma Fluidized Pilot Unit (6 kW)

Collaboration and Coordination

Equipment and Facilities

The team is equipped ☐ Two variable frequency (5.85-6.65 GHz, 200W), solid sate microwave reactors ☐ One fixed frequency (2.45 GHz, 950W), solid state microwave reactor ☐ One fixed frequency (2.45 GHz, 3kW), magnetron microwave reactor ☐ Network analyzer □PNNL-In-situ and ex-situ characterization □ NCSU- Catalytic reactors and analytical instrumentations for material science and surface chemistry ☐ H-Quest-pilot scale microwave reactor (6 kW)

Accomplishments and Progress

Catalyst for Dielectric Heating: Ni-Pd supported by CNT

- 10Ni-1Pd/CNT Catalyst under MW heating showed a great performance on methane pyrolysis.
- The methane conversion decreased as the methane partial pressures increased under MW. It was consistent with the trend observed under conventional heating.
- The study of flow rate showed that faster flow did not necessarily lead to a decreased conversion that was observed under conventional heating.

Partial Pressure

Catalyst Reduction conditions:

- •Temperature: 400 C
- •Flow rate = 70 sccm
- •Concentration = 10% H2
- •Time: 4 h

<u>Testing conditions:</u>

- •Temp.=550 °C
- •Amount of catalyst = 0.2 g
- •Frequency = 5850 MHz

Flow rate

Catalyst for Dielectric Heating: Ni-Cu supported by CNT

- 10Ni-1Cu/CNT Catalyst under MW heating demonstrates obviously better performance than that under traditional heating at the same setting temperature.
- The results showed the good activity for around 6 hours under 30%-100% methane partial pressures.
- Although conversion decreased with CH₄ partial pressure, the amount of converted CH₄ increased with CH₄ partial pressure.

Catalyst Reduction conditions:

- •Temperature: 400 C
- •Flow rate = 70 sccm
- •Concentration = 30% H2
- •Time: 4 h

Testing conditions:

- •Temp.=550 °C
- •Flow rate=30 sccm
- •Amount of catalyst = 0.2 g
- •Frequency = 5850 MHz

Novel Catalyst Synthesis for Base Growth-solving the challenge in CNT-metal separation

exsolution

material

Surface catalyst exsolution control:

precursors

Intermediate T Dilute $H_2+(A_1A_2)(B_1B_2NiCu)O_3-$ (A₁A₂)(B₁B₂)O_{3-δ}+Ni-Cu+H₂O

calcination

material

- > High entropy compound as host tends to decrease to single oxides at intermediate T
- Higher reducibility of NiCuOx than other elements

Deep-buried anchor between Ni-Cu alloy particle and host material, strong bond

Route 2 is potentially preferable for our goal of a robust, base-grown CNT catalyst

Kinetic Modeling: Reaction order of methane pyrolysis over NiPd/CNT

$$\ln(rate) = -\frac{E_a}{R} * \frac{1}{T} + \ln(p_{CH4}^n * k_{app})$$

- Reaction order of 0.6 for CH₄ at 5-30% concentration
- $K_{\rm app} = 86498 \text{ (h}^{-1}\text{bar}^{-0.6}\text{)}$
- Rate equation for CNT formation: rate = 86498 h⁻¹bar^{-0.6} * p_{CH4}0.6 * exp(-6167.6/T)

Activation energy for methane pyrolysis over NiPd/CNT

- 3 mg catalyst, reduction in 10%H₂ at 400°C for 1 h, followed by reaction with 250 ml/min of 30%CH₄/Ar at 500-575 °C for 20 min
- Activation energy of 51.3 kJ/mol for NiPd/CNT catalyst 86.8-115.8 kJ/mol for CH₄ dissociation over Ni(111) 58.6-85.7 kJ/mol for Ni-Mg-Al catalyst

Techno-economic Analysis (PNNL)

Microwave-Assisted Catalytic Methane Pyrolysis (MW) versus Thermal Decomposition (TD)

- Process modeling/ cost analysis for two models:
 - Microwave-assisted catalytic methane pyrolysis
 (MW) process under development
 - Commercial carbon black via thermal decomposition
 (TD) baseline process for comparison
- Potential carbon products:

Туре	Price (\$/kg)	Global Market (MT/yr)		Amanushawa
Carbon black	0.4-2	12 M (2014)	\rightarrow	Amorphous carbon, less
Graphite	10+	80 K (2015)	<u></u>	value
Carbon fiber	25-113	70 K (2016)		Crystalline carbon, higher value
CNT	100+	5 K (2014)		
Needle coke	1.5	1.5M (2014)		

M = million; K = thousand; MT = metric ton Dagle, et al., PNNL-26726, 2017

Key Economic Assumptions

Pricing basis		Other assumptions		
Year	2018	Plant scale (kg CNT/day)	S=4,530; L=302,000	
Catalyst (\$/kg)	4.12	Plant scale (kg H ₂ /day)	S=1500; L=100,000	
Natural gas (¢/kg)	19.5	Project contingency (%)	25	
60% nitric acid (¢/kg)	21.2	OSBL cost (% of ISBL cost)	20	
H ₂ (\$/kg)	0-2.0	Capital cost scaling factor	0.6	
Cooling water (¢/MGal)	14.7	ROI (%)	15	
Electricity (¢/kWh)	5.04	Depreciation (%)	10	

Techno-economic Analysis (PNNL)

Microwave (MW) and Thermal Decomposition (TD) Process Models

Process flow diagram for microwave-assisted catalytic methane pyrolysis (MW) – under development

- Lower temperatures required (< 800°C)
- Requires catalyst/ carbon separation & catalyst resynthesis
- Produces valuable carbon nanotube product

Process flow diagram for thermal decomposition
 (TD) - baseline commercial process

- Thermal process, requires high temperatures (>1200°C)
- Relatively simple process
- Produces solid carbon black as main product
- Technically mature, commercially available

Techno-economic Comparison – Results & Discussion

	Microwave-Assisted Catalytic Pyrolysis (MW)	Carbon Black Process via Thermal Decomp. (TD)
Configuration		
Reactor Temp (°C)	550	1300
Conversion (%)	45	40
Carbon recovery (%)	100 (Acid wash)	(Bag filter)
Heat source	80% fuel, 20% power	100% fuel
Hydrogen recovery (%)	90 (PSA)	90 (PSA)
Process Measures		
Energy (%, LHV)	90.2	75.1
Carbon (%)	89.1	72.5
CO ₂ emission (kg/kg C)	0.41	1.40

- Min. carbon selling price (MCSP) of MW process slightly greater than TD process due to solid separation and catalyst regeneration cost.
- MW process has higher energy and carbon efficiency, and lower CO₂ emission, versus TD process due to lower operating temperature and higher single pass conversion.
 - Note: zero CO₂ emission enabled with process modification, to be evaluated.
- Carbon nanomaterial product from MW process is crystalline, higher value than amorphous carbon produced from TD process.

Overview Pilot Test

Current status:

- (1) tested spouted and fluidized bed reactor prototypes
- (2) evaluated fluidization of multiple materials
- (3) shown MWCNT microwave plasma entrainment

Prototype reactor characterization

Methane Conversion without Entrained Particles

Microwave power: Entrainment gas: Entrained particles:

2-3.5 kW 5-10 slpm CH₄ None

Methane conversion rate: 20%-60%

High selectivity to C_2H_2 : >70%

High SER: >15 kWh/kgCH₄

Promising results for a prototype unoptimized system. Baseline for catalytically assisted conversion.

Reactor configurations iteratively modified to maximize plasma extents and particle interaction

General description

- Feed supplied vertically from below in either spouted or fluidized configuration;
- Ionized gas (plasma) is launched horizontally cross-axis to entrained feed;
- Exhaust entrainment and particle loss controlled by limiting gas velocities.

Instrumentation:

- Viewports for camera and spectral capture
- TC and pressure transducers downstream

Summary

- □ Catalyst formulation Ni-Pd and Ni-Cu are developed. Precious metal Pd is replaced by Cu
- ☐ The microwave sensitivity are observed. New catalyst formulation "base-growth" is developed which will lower the cost of separation.
- □ Process simulation and TEA model developed. Kinetics model has been developed.
- ☐ Microwave plasma pilot plant commissioning
 - *Tested spouted and fluidized bed reactor prototypes
 - *Evaluated fluidization of multiple materials
 - ❖ Shown MWCNT microwave plasma entrainment

Proposed Future Work

□ Develop low-cost catalyst-CNT separation process
□ Scale-up catalyst synthesis protocol from gram level to 100 grams level
□ Pilot microwave plasma reactor test using Ni-Cu supported and unsupported catalyst
□ Post test characterization of spent catalysts and carbon nanomaterials
□ Process simulation and technoeconomic analysis based on pilot test data

Technical Backup and Additional Information

The Theory: Microwave Sensitive Catalysts

Microwave sensitivity

Material with high loss tangent

tan $\delta = \epsilon'' / \epsilon'$ ϵ : dielectric constant Methane Pyrolysis activity

- Methane activation
- Selectivity towards oligomerization

metal/support

Metals: Fe/Ni/Cu/Pd/Co

Supports:
Zeolite/SiC/
Carbon/no support

Thermal energy P per unit volume:

$$P = \pi f \varepsilon_0 \varepsilon_r^{"} |E|^2 + \frac{1}{2} \sigma |E|^2 + \pi f \mu_0 \mu_r^{"} |H|^2$$

Dielectric loss

Conduction loss

Magnetic loss

West Virginia University.

Performance Test: 10Ni-1Pd/CNT Catalyst (WVU)

- (a) Partial pressure test from 30%CH₄ to 100%CH₄ and the H₂ selectivity is close to 1 under different pressures.
- (b) Each cycle shows similar activity and stability.
- (c) Temperature test from 500°C to 700°C, and 600°C is an ideal reaction temperature.

Reaction-regeneration cycles **70**

Effect of temperature on carbon formation rate

- 3 mg catalyst, reduction in 10%H₂ at 400°C for 1 h, followed by reaction with 250 ml/min of 30%CH₄/Ar at 500-575 °C for 20 min
- Up to 30 g/g-h carbon formation rate at 575 °C

Effect of methane concentration on carbon formation rate

- 3 mg catalyst, reduction in 10%H₂ at 400°C for 1 h, followed by reaction with 250 ml/min of 5-30%CH₄/Ar at 550 °C for 20 min
- Up to 23 g/g-h carbon formation rate with 30% CH₄