

Hydrogen Program 2022 Annual Merit Review and Peer Evaluation Meeting

DOE Hydrogen Shot Strategy Discussion

June 7, 2022

DOE Hydrogen Shot Strategy Panel

PROGRAM & PANELISTS

	Hydrogen Shot Strategy Introduction	Eric Miller
	Electrolysis Pathways	David Pete
	Electrolysis Cost Reduction Strategies	McKenzie I
	Manufacturing, Recycling & Supply Chain	Paul Syers
	Wind-to-Hydrogen Opportunities	Jian Fu (W
1	Nuclear-Produced Hydrogen and Use	Jason Mar
į	Thermal Conversion Pathways	Eva Rodezı
	Flexible Feeds and Products	William Gi
	Methane Pyrolysis Opportunities	Jack Lewno
ł	Technology Commercialization	Jonah Wag
	Thermal Integration with CSP	Avi Shultz
k	Advanced Pathways	James Vick
	Advancing Science & Technology	Viviane Scl
	Advancing DEI and EEEJ	Kendall Pa
ŝ		

PANEL Q&A

(HFTO) erson (HFTO) Hubert (HFTO) (AMO) ETO) cinkoski (NE) no (FECM) ibbons (HFTO) ard (ARPA-E) gner (LPO) (SETO) kers (HFTO) hwartz (SC-BES) rker (HFTO)

June 7th, 2022

Hydrogen

Hydrogen Energy Earthshot

"Hydrogen Shot"

"1 1 1" \$1 for 1 kg clean hydrogen in 1 decade

> Launched June 7, 2021 Summit Aug 31-Sept 1, 2021

Hydrogen Shot Summit Stakeholder Feedback

4,900+ total registrants, 3,200+ participants in Plenary, 33 countries + USA

Speakers included:

 Secretary Granholm, DOE Leadership across offices

• Sec. John Kerry

• Bill Gates

 Industry CEOs, VPs Congressional Members, Labs, Research and Academic Experts Responses to: What are the greatest barriers preventing public acceptance of widespread H_2 in the US?

https://www.energy.gov/eere/fuelcells/hydrogen-shot-summit

Leveraging Diverse Domestic Clean H₂ Options

Hydrogen

All Pathways Contribute to the Mission

ELECTROLYSIS

Critical path to sustainable clean H₂ production at scale

Reduce costs to achieve scale

- Reduce capital cost of integrated electrolyzer systems (stacks and BOP) at GW scales to <\$150/kW
- Optimize integration of electrolyzer systems with renewable and nuclear power to leverage on-site electricity costs <\$200/MWh

Expand Production Capacity

THERMAL CONVERSION

Decarbonization through industrial retrofits

Add CCUS to reduce emissions

- Improve performance and cost of integrated systems for natural gas reforming with CCUS achieving emissions targets
- Develop diverse options such as gasification of waste feedstocks & pyrolysis of natural gas

Adapt Current Production

ADVANCED PATHWAYS

Innovative approaches offering cross-cutting benefits

Achieve high-impact breakthroughs

- Develop advanced H₂O-splitting systems with solar-to-H₂ conversion efficiencies >30%
- Develop robust microbial processes and systems to produce affordable clean H₂ from diverse bio- and waste-feedstocks

Explore Promising Alternatives

DOE All-Hands-On-Deck Effort

The DOE Hydrogen Program* aligns with the Hydrogen Shot and H2@Scale initiatives, & supports National clean energy priorities

https://www.hydrogen.energy.gov/pdfs/hydrogen-program-plan-2020.pdf

EERE HYDROGEN

Feedstocks:

• Renewable Energy and Water

Technologies:

- Electrolysis Low- and High-Temperature
- Advanced Water Splitting Solar/High-Temp Thermochemical, Photoelectrochemical
- Biological Approaches

FECM HYDROGEN

Feedstocks:

• Fossil Fuels – Natural Gas and Solid Wastes

Technologies:

- Gasification, Reforming, Pyrolysis
- Advanced Approaches Co-firing and Modular Systems
- Natural Gas to Solid Carbon plus Hydrogen

Areas of Collaboration

Reversible Fuel Cells, Biomass, Municipal Solid Waste, Plastics, Polygeneration including Co-Gasification with Biomass, High-Temperature Electrolysis, Systems Integration

Cross-Cutting DOE Offices including SC, ARPA-E, LPO, OCED...

Foundational research and innovation; user facilities and tools, materials and chemical processes, artificial intelligence/machine learning, databases and validation, high risk-high impact R&D, hubs, loans, and other crosscutting activities

*coordinate through the EERE Hydrogen and Fuel Cell Technologies Office

NE HYDROGEN

Feedstocks:

Nuclear Fuels and Water

Technologies:

- Electrolysis Systems for Nuclear
- Advanced Nuclear Reactors
- Systems Integration and Controls LWRs and Advanced Reactors

Comprehensive RDD&D Approach

data &

Leveraging DOE-wide collaborations and coordination to advance technologies and achieve cost targets and scale

Commercial-scale deployments

- BIL 813. Regional Clean H₂ Hubs
 - Supporting development of at least 4 regional hubs nationwide
- Collaborations & Coordination include:
 - DOE-wide coordination
 - Regional, state, and local agencies
 - Safety, workforce, EJ40, etc.

Technology Readiness Level

Foundational & applied research

- DOE Program Offices Core R&D
- BIL 816 & 815 R&D:
 - Electrolysis & clean H₂ manufacture/recycle
- DOE Consortia & Collaborations include:
 - HydroGEN, ElectroCat, H-Mat, X-Mat ...
 - H2-related Innovation Hubs & Centers

next-generation technologies

Technology Investment Stage

near-commercial technologies

established technologies

Focus on Bridging Innovation with End-Use

Programmatic Focus	Key Priorities		
Hydrogen Shot Management DOE Advisory Groups	Provide guidance and oversee activities & progress		
Core Analysis TEA, LCA, Resource, Markets	<i>Refine tools, and develop advanced models</i>		
Data and Analytics Informatics on All Pathways	Update databases with project results and analyze trends		
Metrics & Targets SMART Technology Goals	<i>Refine targets based on evolving tehnoeconomic landscapes</i>		
Project Portfolio Aligned with Goals & Targets	Develop RDD&D portfolio and actively manage projects		
Progress Tracking <i>Cost, Emissions, & EJ40</i>	Assess progress toward goals & course-correct as needed		
Portfolio Optimization RDD&D Prioritization	Adjust priorities based on project outcomes and policy factors		

Off to a Good Start – exciting times ahead!

recurring events include stakeholder listening sessions, H2IQ webinars, etc.

*feedback from recent RFIs and the AMR being incorporated in strategy

Hydrogen Shot Strategic Vision

- Leverage the DOE Hydrogen Program core RDD&D to address materials, component, and systems integration challenges relevant to production pathways
- Leverage deployment of BIL regional clean hydrogen hubs to advance scale up and associated cost reductions in mature and early-commercial systems
- <u>Leverage clean H₂ manufacturing and recycling projects</u> under BIL to advance business propositions for all commercial and viable next-generation technologies

The Hydrogen Shot 1,1,1 goal for affordable clean hydrogen at scale is a key enabler of the DOE National Clean Hydrogen Strategy addressing pressing clean energy, climate, and EEEJ priorities

Electrolysis Pathways

David Peterson Technology Manager DOE-EERE-HFTO

Water Electrolysis Overview

Water electrolyzer cell configuration (H⁺ Conductor): Anode: $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$ Cathode: $4H^+ + 4e^- \rightarrow 2H_2$

Electrolyzer technologies differentiated by electrolyte conducting species and temperature

Overview of Electrolyzer Technologies

- Current generation at high TRL (LA, PEM, O-SOEC) ready for commercialization
- Next generation at lower TRL needed to achieve performance and cost targets to meet \$1/kg H₂

Technology	Advantages	Development Needs
Liquid Alkaline (LA)	Most mature, Low-cost materials, Long lifetime	Improved performance, Dynamic operation capability
Proton Exchange Membrane (PEM)	High performance, dynamic operation capable	Lower cost materials (e.g., reduced PGMs)
Oxide-ion conducting Solid Oxide (O-SOEC)	High efficiency, thermal energy integration	Improved lifetime, intermittent operation
Alkaline Exchange Membrane (AEM)	Low-cost materials, High performance and dynamic operation potential	Improved lifetime, Supporting electrolyte required?
Proton-conducting Solid Oxide (P-SOEC)	High efficiency potential, thermal integration, Lower cost materials	Improved lifetime and Faradaic efficiency

Lower-TRL Next generation (AEM, P-SOEC) have the potential to achieve performance and cost targets needed to meet \$1/kg H₂, but further development is required

Electrolysis Cost Reduction

McKenzie Hubert ORISE Fellow DOE-EERE-HFTO

Cost Reduction Strategy- PEM Example (similar analysis for LA & SOEC)

Potential pathways for achieving \$2/kg and \$1/kg targets: Comprehensive approach targeting cost, efficiency, durability

Analysis efforts identify possible cost reduction strategies⁺

⁺ Reference case: Wind to H₂ example pathway to achieve target cost, but not the only pathway. See next slide for underlying assumptions.

* DOE Hydrogen and Fuel Cells Program Record #20004, Sept 2020

Key factors for cost reductions

Technology	High electrical efficiency
Advancements	Increased durability/lifetime
Domestic	Low-cost capital equipment
Manufacturing	Low-cost manufacturing
	processes at GW-scale
Demonstrations	Low-cost clean electricity

Achieving economies of scale alone will not meet cost targets, also need to develop advanced technologies & integrated systems with clean electricity

Cost Reduction Pathways – LTE Example (different targets for HTE)

Technical t	argets under	development ·	- LTE example	Capital cost levers - PEM example	
Key Cost Parameters	2020 Status* (\$5/kg H ₂)	2026 Target (\$2/kg H ₂)	2031 Target (\$1/kg H ₂)	Catalyst-coated Membrane Porous Transport Layers Stack Frame	
System efficiency	55 kWh/kg	51 kWh/kg	46 kWh/kg	BOP 12% 15% Bipolar Plates 8% Bipolar Plates Balance of Stack	
Stack lifetime	60,000 hr	80,000 hr	100,000 hr	13% 3% 7% 19 Dever Supplies Deionized Water Circulation	
System capital cost	\$1500/kW	\$250/kW	\$150/kW	Data from Mayyas, et al. August 2019. NREL/TP- 6A20-72740	
Manufacturing volume	~100 MW/yr	~1 GW/yr	~1 GW/yr		
	Distributed	Central	Central	Improved clean-electricity integration options	
Plant size	(1,500 kg/day nameplate)	(50,000 kg/day nameplate)	(50,000 kg/day nameplate)	Preliminary analysis 2020 Preliminary analysis 2026 Preliminary analysis 2026	
Energy supply⁺	Grid-connected (\$51/MWh, 80% operating capacity factor)	Clean Energy PPA (e.g., \$25/MWh, 50% operating capacity factor) [†]	Direct Integration (e.g., \$12/MWh, 50% operating capacity factor) [†]	0.04 0.04 0.03 0.03 0.03 52/k9 0.04 52/k9 0.04 52/k9 0.03 52/k9 0.03 52/k9	
⁺ Reference case: \ * DOF Hydrogen g	Nind to H ₂ scenario, I nd Fuel Cells Program	but not the only pathw Record #20004, Sent	vay to achieve target	0.02- 0.01- ≤\$2/kg 0.01- ≤\$1/kg 0.01- ≤\$1/kg	

0.2 0.3 0.4 0.5

0.00

0.3 0.4 0.5

0.8 0.9 1.0

Capacity Factor

0.6 0.7 0.8 0.9 1.0

0.9

≤\$1/kg

0.2 0.3 0.4 0.5 0.6 0.7 0.8

2031

Manufacturing & Supply Chain

Paul Syers Technology Manager DOE-EERE-AMO

Hydrogen Supply Chain, Today vs 2050

To meet 2050 decarbonization goals, clean H₂ technologies need to significantly grow!

Today's Hydrogen Market

- ~10 MMT/yr in the U.S.
- 65-100 MMT/yr globally
- Almost none of that is electrolytic

2050 Projected Hydrogen Market

- >100 MMT/yr in the U.S.
- >500 MMT/yr globally

To meet that demand with net zero emissions, U.S. manufacturing would need to reach:

- 300 GW/yr of fuel cells
- 1,000 GW/yr of electrolyzers (vs. ~0.17 GW today)

More information: www.energy.gov/eere/fuelcells/water-electrolyzers-and-fuel-cells-supply-chain-deep-dive-assessment

19

Growing & Strengthening the Supply Chain

Key U.S. vulnerabilities & opportunities for growing electrolytic hydrogen & fuel cell production:

Vulnerabilities	Opportunities
Electrolytic prod. & util. technologies are not cost competitive	Reduce production costs, increase commercialization
Insufficient emission reduction incentives	Develop competitive application
Insufficient codes & standards	Develop more codes & standards
Insufficient electricity generation capacity	Expand electric grid capacity
Electrolyzers are not fully utilized for excess grid energy use	Improve bulk hydrogen storage
Insufficient infrastructure	Utilize existing nat. gas infrastructure
Materials supply & manufacturing capacity not sufficient to meet projected demand	Increase domestic materials supply & mfg capacity
Industry has energy & environmental justice issues	Lead on EEJ issues
Mismatch in workforce supply & demand	Export Hydrogen

More information: <u>www.energy.gov/eere/fuelcells/water-electrolyzers-and-fuel-cells-supply-chain-deep-dive-assessment</u>

20

Wind to Hydrogen Opportunities

Jian Fu Program Manager DOE-EERE-WETO

Wind -Hydrogen Strategy

Optimized, Cost competitive, Scalable, Modular, and Integrated Wind – H₂ Systems

INTEGRATED WIND HYBRID GENERATION	+ OPTIMIZED + H ₂ PRODUCTION +	COST COMPETITIVE CLEAN H ₂ ACROSS SECTORS
Optimized Wind / Solar / Storage Hybrid Electricity Generation - matching H2 use demand profile	H ₂ production: Near collocated (reduced delivery - potential direct pipeline) to user	Industrial: Green Steel, Green Cement, Green Ammonia, Green Chemicals
Direct Wind-Electrolyzer Connection: Shared Components / Control	Reduced storage requirements: continuous real time generation	Transportation: Green Fuels – Marine, Aviation, Heavy trucking
Overbuilt, paired electrolyzer plant to enable full, dedicated electricity utilization (no curtailment losses)	Potential option to eliminate Grid connected equipment & Grid connection constraints	Target: Cost competitive – without subsidization

Nuclear Hydrogen Opportunities

Jason Marcinkoski Program Manager DOE-NE

Nuclear Integrated Energy System Concept

Thermal Conversion Pathways

Eva Rodezno Program Manager DOE-FECM

Thermal Conversion Pathways

Industrial Process	Carbon Capture Method		
Steam Methane	Pre & Post		
Reforming	Combustion Capture		
Autothermal	Pre-Combustion		
Reforming	Capture		
Partial Oxidation	Pre-Combustion Capture		
NG Pyrolysis	Solid Carbon Product		
Coal & Biomass	Pre-Combustion		
Gasification	Capture		

Thermal Conversion Cost Reduction Strategies

R&D Needs

- Process Intensification to improve efficiency and reduce CAPEX
- Improved CO₂ sorbents
- Improved sorbent separation technology
- High-temperature H_2/CO_2 separation membranes
- Advanced catalysts to lower system energy requirements and reduce cost

Cost Reduction Strategies

- Sharing CO₂ transport and storage costs with other emitters
- CO₂/carbon valorization
 Location selection
- Plant Scaling
- Integrated energy systems
- Byproduct sales (argon, carbon black, sulfur, slag)

Thermal Conversion: Flexible Feeds & Products

William Gibbons Technology Manager DOE-EERE-HFTO

Thermal Conversion- Gasification + CCS

The gasification process converts organic or fossil-based carbonaceous materials at high temperatures (>700°C) without combustion into hydrogen, carbon monoxide, and carbon dioxide; typically with a controlled amount of oxygen and/or steam. The carbon monoxide can then react with water to form carbon dioxide and more hydrogen via a water-gas shift reaction.

Opportunities:

- Feedstock flexibility, leveraging regional resources: biomass-, fossil-, and waste- feedstocks
- Tunable value-add co-products
- Valorization of waste streams (MSW, plastics, etc.)
- Potential for net negative carbon emissions
- Novel smaller/modular gasification systems enable distributed operation

Research Needs:

- Feedstock pre-treatment & transport cost reduction
- Feedstock variability and contamination
- Optimal feedstock blending
- Process intensification
- Add/leverage/adapt existing carbon capture technology

Thermal Conversion - Novel Integrated Systems

Innovative integrated systems benefit from component-level advances as well as operation optimization

Opportunities:

- Feedstock flexibility, leveraging regional resources
- Polygeneration of H₂ + value-add co-products
- Integrated & optimized carbon management
- Hybridization allows for regional tuning & max. ROI

Research Needs:

- Analysis of novel configurations
- Component technology advances (*durability, efficiency, and cost*)
- System level optimization & cost reduction (complexity vs benefit)
- Optimized operations for varied inputs (feedstock and electricity costs in real time)

Source (INL review): <u>https://www.sciencedirect.com/science/article/pii/S1388248121001521</u>

Methane Pyrolysis

Jack Lewnard Program Director DOE ARPA-E

Cracking Methane: *Two Product Process*

Methane Pyrolysis Cohort.. 2018 OPEN & 2019 FOA

TINA 2019

Observations

- Hydrogen-centric processes could be competitive with SMR and PEM/AEM electrolysis
 - Need \$0.5-1/kg carbon price for parity with H₂-only processes
 - Requires very large carbon market (cement, asphalt, soil, sequestration)
 - Less sensitive to natural gas price than SMR
 - Electrically heated processes remain competitive with electrolysis in an all-electric future
- Carbon-centric processes
 - Generally target smaller-volume/higher-value markets
 - Hydrogen co-product could be used captively as fuel vs sale

Technology Commercialization

Jonah Wagner Senior Advisor DOE-LPO

Path to Commercial Scale for Clean H2

Barriers to scaling clean hydrogen

High unit costs for production	 Current prices at \$4-5/Kg serving narrow set of use cases, though recent high NG prices narrow gap Sub-scale domestic electrolyzer manufacturing capacity Multiple deployments will lower the cost of existing clean hydrogen technologies (i.e., \$1/kg Earthshot) 	0	Contracted medium/long-term offtake for clean H2 to create a stable demand signal and enhance bankability
Lack of common infrastructure	 Currently only ~1,600 miles of H2 pipelines in the U.S., with high capex cost (~\$3M per mile) Other transport options (e.g., truck, ship) can add significant cost On-site production an option for certain uses 	0	Regional hubs with shared infra costs for common infrastructure supporting multiple developers and offtakers
Lack of commercial debt	 Debt allows for scaling and replicability of clean H2 business models Current market funded by private equity, while commercial debt limited by tech risk and bankability 	0	LPO lending supporting early stages of commercial scale up by taking early deployment risk

Paths to scale

Sources: IEA, FCHEA Hydrogen Roadmap, BNEF

Emerging Business Models LPO is Seeing

Business models

- Methane pyrolysis for clean hydrogen and carbon black
- Hydrogen production and storage facilities for seasonal energy storage
- Distributed H2 production and distribution for transportation and equipment
- Retrofitting of transmissionconstrained renewable assets for hydrogen / green ammonia production
- "Anchor tenant" hydrogen hub facilities (e.g., H2-based steel production, ports)

LPO conditional commitments

Monolith materials: ~\$1B

- FOAK commercial deployment of methane pyrolysis
- Two revenue sources: green ammonia and carbon black (large, established markets)

Magnum ACES: ~\$500M

- Green hydrogen production and storage facility to supply hydrogen-ready NG-power plant
- Offtake from Intermountain Power Agency
- Balance renewable generation and improve transmission utilization

Thermal Integration with CSP

Avi Shultz Program Manager DOE-EERE-SETO

Solar Thermochemical Processing

Advanced Pathways

James Vickers Technology Manager DOE-EERE-HFTO

Exploring Potential of Advanced Pathways - *examples*

Hydrogen Production Cost (\$/kgH2)

Fermentation with Microbial Electrolysis of Waste Streams

Fermentation Boundary Study

Advanced Pathways – *Progress and Impacts*

Important Progress in PEC Solar Water Splitting

JCAP has identified a range of integrated device architectures that allow for efficient operation and scalable deployment of intrinsically safe solar-hydrogen systems. It was demonstrated a >10% and sustained (>40 hours) unassisted solar-driven water-splitting using a fully integrated, membrane-based, wireless prototypes systems that comprised of tandem junction photoabsorbers and earth-abundant electrocatalysts

E. Verlage,. et al. E&ES, DOI: 10.1039/C5EE01786F (2015)

Notable Progress in Photocatalytic Aqueous H₂ Production

2-protein biohybrid system produces hydrogen in aqueous solutions via light-induced interprotein electron transfer reactions. The native electron shuttle protein ferredoxin (Fd) is used as a scaffold for binding of a ruthenium photosensitizer and H2 catalytic function is imparted to its partner protein, ferredoxin-NADP+-reductase (FNR), by attachment of cobaloxime molecules.

IMPACTS OF ADVANCED PATHWAY RESEARCH:

- Offers efficient direct conversion of clean energy sources into solar fuels
- Potential for breakthrough levels of solar to hydrogen conversion efficiency (e.g., >30% with PEC, STCH)
- Cross-over knowledge developed for catalysts, interfaces, and complex materials systems
- Training a new generation of hydrogen technology experts

Brahmachari et al.. Photosynthesis Research 143:183–192 (2020)

Advancing Science & Technology

Viviane Schwartz Program Manager DOE-SC-BES

Advancing Science

Innovative Tools and Scientific Advances:

- Data Science coupled with theory and experimental tools
- In-situ and Operando characterization methods

Materials Project:

Combination of high-throughput calculations, state-of-the-art electronic structure methods as well as novel data mining algorithms for surface, defect, electronic and finite temperature property predictions -- to yield an unparalleled materials design environment.

https://science.osti.gov/wdts

Primarily done by supporting undergraduates, graduate students, and postdoctoral researchers through research and development awards at universities and at the DOE national laboratories.

X-ray User Facilities: Studies combining X-ray Scattering with X-ray Spectroscopy provide mechanistic insight into the process of electrocatalyst degradation. Schematic of operando synchrotron X-ray scattering, representative scattering data, and evolution of platinum electrocatalyst nanoparticle size distribution derived from X-ray scattering data as a function of potential cycling.

Neutron User Facilities:

Neutron scattering can track the dynamic changes of materials composed of lowatomic-weight elements in operating environments. Schematic of operando smallangle neutron scattering of an operating fuel cell and representative scattering data showing evolution of the structure of the fuel cell membrane with cell current.

Advancing Technology-*Recent Roundtable on Carbon-Neutral H₂ Technologies*

Basic Energy Sciences Roundtable

Foundational Science for Carbon-Neutral Hydrogen Technologies

BES convened a Roundtable in August 2021 chaired by Morris Bullock (PNNL) and Karren Moore (ORNL)

Priority Research Opportunities for a BES research agenda:

Discover and Control Materials and Chemical Processes to Revolutionize Electrolysis

• How do we co-design multiple components that work together to enable stable, efficient electrolysis for the carbon-free production of hydrogen from water?

Manipulate H₂ Interactions to Harness the Full Potential of H₂ as an Energy Carrier

• How do we acquire fundamental insights across the entire range of energies to allow selective tuning of hydrogen interactions with molecules and materials?

Elucidate the Structure, Evolution, and Chemistry of Complex Interfaces for Energy and Atom Efficiency

• How can co-existing and evolving interfaces be tailored at multiple length scales to achieve energy-efficient, selective processes and enable carbon-neutral hydrogen technologies?

Understand and Limit Degradation Processes to Enhance the Durability of Hydrogen Systems

• How do we identify and understand the complex mechanisms of degradation to obtain foundational knowledge that enables the predictive design of robust hydrogen systems?

https://science.osti.gov/bes/Community-Resources/Reports

Advancing Energy Equity & Environmental Justice (EEEJ)

Kendall Parker ORISE Fellow DOE-EERE-HFTO

How do we transform our energy system while ensuring it becomes more equitable and just?

DOE Justice40 Policy Priorities for Disadvantaged Communities

Examples of DEI and EEEJ-Related Activities

- H2 Matchmaker to facilitate hydrogen hub teaming and stakeholder identification
- H2EDGE for workforce training in the hydrogen economy
- Center for Hydrogen Safety to provide educational resources on hydrogen safety
- Fellowships to support the next generation of hydrogen and fuel cell leaders
- IPHE Early Career Network to connect young professionals interested in hydrogen
- HBCU-OMI FOA for university training and research at minority serving institutions
- H2 Twin Cities to build global partnerships that deploy clean hydrogen solutions

An AIChE Technical Community • A Global Resource On Hydrogen Safety

Exciting Fellowship Opportunities

Seeking Diverse Candidates

Hydrogen

The U.S. Department of Energy (DOE) is looking for talented, bright, early career professionals to partner with DOE Hydrogen Program Managers working to achieve the Hydrogen Energy Earthshot goal of \$1 per 1 kilogram in 1 decade ("111"). Are you graduating soon or just starting your career in hydrogen?

Do you want to help make clean hydrogen affordable for all?

The Hydrogen Shot Fellowship might be the opportunity you're looking for!

Thanks to All Our Panelists!

Panel Q&A

From your perspective, what is one key priority for meeting the ambitions 1,1,1 Hydrogen Shot goal, and on a scale of 1 to 10, how confident are you we'll meet it within a decade?

> Moderator Eric Miller DOE-EERE-HFTO

Thank You!

https://www.energy.gov/eere/fuelcells/hydrogen-shot

