

Clusters of Flexible PV-Wind-Storage Hybrid Generation (FlexPower)

Topic Area 6: Generation Subtopic 1: Hybrid Systems

Project Summary

NREL – INL - SNL project team

May 26, 2022

General FlexPower Concept

The main research objective of this project is to provide the industry with an answer and a solution to the following question:

How can hybrid plants consisting of renewable energy and storage be transformed into fully dispatchable and flexible sources of energy suited to operate in day-ahead and real-time energy markets as well as flexibility and capacity services markets while providing all essential reliability and resiliency services to the bulk power system?

Main tasks:

- Hybridization potential evaluation (wind, solar and hydro power/PSH
- Plant controls development and demonstration (wind, solar, hydro, storage)
 - PSH, H2 storage, BESS, kinetic, UCAP
 - · Fast and slow controls
 - Resiliency services
- Regional integrations study

Project team: NREL, INL, SNL

Energy Storage in FlexPower

Hybridization Potential Evaluation

- Generated maps comparing complementarity with pumped storage hydropower resource assessment (top figures)
- Completed draft journal article covering wind-PV complementarity analysis, which:
 - Wide range of metrics for wind-PV complementarity, based on hourly generation profiles derived across multiple weather years
 - Price-taker analysis exploring the relationship between complementarity and energy value, now and in the future
 - Draft to WETO: end of Q2

Seasonal variation in hourly correlated PV-Wind power production Correlation, hourly [Feb] 0.5 1.0 hourly [Apr] hourly [Mar] Correlation, Correlation, hourly [June] hourly [July] Correlation, hourly [Sept] Correlation, Correlation, hourly [Nov]

IVIAY 20, 20NREL P 5

FlexPower Control functions

GRID
MODERNIZATION
LABORATORY
CONSORTIUM
U.S. Department of Energy

- Dispatchable energy services and flexibility services with resource forecast:
 - o Reduced curtailment, increased energy production, and higher capacity factors from the same plant footprints
 - Fully dispatchable, load-following operation using long (hours, days)- and short-term (5 min) production forecasts, and capability to bid into day-ahead and real-time energy markets (like conventional generation), forecast error mitigation
 - Capacity and flexibility services
 - Aggregate plant level ramp limiting, variability smoothing, and cloud and wake impacts mitigations
 - Various strategies to provide different types of reserve and flexibility products (head room estimation for wind and solar is implemented)
- Essential and advanced reliability services:
 - Automatic generation control (AGC) and primary frequency response
 - Fast frequency response (FFR) and synthetic inertia
 - Superior plant-level 4-quadrant dynamic reactive power/voltage control
 - Stable operation with weaker grids
 - Enhanced fault ride-through performance/recovery profiles, programmable reactive current injection
 - Advanced controls for damping all types of power system oscillations, control interactions, and resonances
- Transient performance
- Resiliency services:
 - Grid-forming, black start, participation in grid restoration
 - Islanded operation

Optimizer

Fast Services Controller

FLEXPOWER "MARKET INTERFACE"

The two-layer FlexPower Plant Controller

Timeline of FLEXPOWER "MARKET INTERFACE"

Hybrid wind-PV-storage plant model – 300-day simulation

100 MW wind

90 MW PV

100 MW / 4 hr storage

Real-time 5-min dispatch – example days

FlexPower Hybrid Plant Demonstration Platform

Multi-task Controller Interface

Test platform

H2 Storage Model Integrated in PHIL

Flexpower Plant in IEEE 39 Bus System

FlexPower Controller

Wind / PV / H₂ Storage plant operation at Flatirons Campus

Wind / PV / H₂ Storage plant operation at Flatirons Campus

PSCAD Model of FlexPower Plant – all components

H₂ storage RT model integrated in FlexPower Test Platform

RTDS-Typhoon HIL Interfacing and FlexPower H2 CHIL

RTDS-Typhoon HIL and HILConnect Integration

Setup at NREL ARIES for H2 Electrolyzer and Fuel Cell System CHIL

Typhoon HIL Emulator + EPC Connect

Typhoon HIL Interface Board

RTDS GTAO & GTAI

RTDS RSCAD Power command: 0 to +500kW (Fuel Cell Gen.)

Ramp rate (true): 4 MW/s

Vrms at PCC: < 1.05 per unit

IEEE39 bus model + Flexpower

Added Typhoon CHIL node

H2 Storage Operation in IEEE39 bs system – PHIL setup

Northern CA Test System: Integration Study for FlexPower Plants

julia> norcal_sys System **Property** Value System Units Base SYSTEM_BASE Base Power 100.0 Base Frequency 60.0 8035

Static Components

Num Components

Туре	Count	Has Static Time Series	Has Forecast
Arc Area Bus GenericBattery HydroDispatch Line LoadZone MonitoredLine PowerLoad	2413 4 1969 5 232 1463 4 344 658	false true false true false true false true false false false true	false true false true false true false false false true true
RenewableDispatch ThermalStandard Transformer2W	60 153 730	true true false false	true false false

Time Series Summary

Property	Value
Components with time series data Total StaticTimeSeries Total Forecasts Resolution First initial time Last initial time Horizon Interval Forecast window count	950 1235 1235 60 minutes 2009-01-01T00:00:00 2009-12-29T00:00:00 48 1440 minutes 363

Norcal Test System Capacity Mix

