

2023 Hydrogen Annual Merit Review June 7, 2023

Jack Lewnard, Program Director jack.lewnard@hq.doe.gov

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Methane Pyrolysis:

Lowest-cost Hydrogen <u>Assuming</u> Carbon Revenues

Carbon Sales Drive Down H₂ Costs

ARPA-E Program: 8 Projects, Diverse Objectives

New Carbon Applications

Technical Challenges

- ▶ Marc von Keitz review
 - Chemistry, kinetics, thermodynamics

https://www.energy.gov/sites/default/files/2021-09/h2-shot-summit-panel2-methane-pyrolysis.pdf

- Process Flow Diagram
 - Unit Operations
- Materials of Construction

Generic Process Flow Diagram

Unit Operations

Unit	Requirements	Options	Challenges
Reactor	High per-pass CH ₄ conversion Low acetylene production	High temperature Catalyst	High energy demand Catalyst recovery/carbon contamination
		Non-thermal plasma	High energy demand
Reactor	Heat/energy transfer	Molten salts/metals	Carbon contamination
		Non-thermal plasma	Scale
Carbon separation	Carbon/exit gas	Candle filter	Carbon fouling Volatile metal/salt
	Carbon/molten media	?	
	Carbon/catalyst	Offline regeneration?	OPEX/CAPEX

May 24, 2023 Insert Presentation Name

Unit Operations

Unit	Requirements	Options	Challenges
Heat exchanger	Cool gas Energy recovery	Fluid – gas, steam, etc	High temperature Fouling
		Quench	Low energy recovery
Hydrogen separation	High H ₂ recovery/purity	PSA, membrane	Feed compression Need high CH ₄ conversion to avoid low H ₂ recovery
Instruments	High temperature	Thermocouples?	Life
	"Carbon sensor"	Pressure drop?	Speed
	Control valves		Materials

Materials of Construction Challenges

- ► Extensive DOE history gasification, concentrated solar power, etc.
- ► High temperature/reducing environment
 - Exceed allowable temperatures for carbon steel (420 C)
 - Refractory lining
 - High-grade materials (stainless, etc)
- ► Molten salts/molten metals
 - High corrosion rates
- ▶ Fewer options for instruments, control valves, heat exchangers, etc

Metal Dusting – High temperature/reducing conditions

https://www.electrochem.org/dl/ma/201/pdfs/1111.pdf

Figure 3. Photograph of commercial Ni-base Alloy 600 and ANL-developed alloy after 5,700-h exposure to the same metal dusting environment at 593°C.

https://www1.eere.energy.gov/manufacturing/industries_technologies/imf/pdfs/metaldusting.pdf

Conclusions

- ▶ DOE has to collective capabilities to advance methane pyrolysis
- ► Economically attractive option, esp if carbon markets can scale
 - IDEO/AMMTO: replace materials with higher LCA?
- ▶ "Historical" focus on reactor needs to expand to other unit operations
 - Starting points FECM prior work on gasification, candle filters, heat exchange
- ► Leverage DOE's prior work on materials of construction
 - Starting points FECM prior work on gasification, EERE work on CSP

May 24, 2023 Insert Presentation Name

If it works...

matter?

