

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Fuel Cell Technologies Overview

Dr. Dimitrios Papageorgopoulos, HFTO – Fuel Cell Technologies Program Manager

2023 Annual Merit Review and Peer Evaluation Meeting

June 6, 2023 – Arlington, VA

The Hydrogen and Fuel Cell Technologies Office (HFTO)

Mission	Support research, development and demonstration (RD&D) of hydrogen and fuel cell technologies to advance:	 Clean Energy and Emissions Reduction Across Sectors Job Creation and a Sustainable and Equitable Energy Future
---------	--	---

Office Sub-Programs			
Hydrogen Technologies	Fuel Cell Technologies	Systems Development & Integration	U.S. DEPARTMENT OF ENERGY Hydrogen
Hydrogen Production Hydrogen Infrastructure	Materials & Components Systems	Transportation Industrial and Chemical Applications Grid Energy Storage and Power Generation	Enabling

Data, Modeling, Analysis, Safety, Codes and Standards

Fuel Cell Technologies

Fuel cells use a wide range of fuels and feedstocks; deliver power for applications across multiple sectors; provide long-duration energy storage for the grid in reversible systems.

Innovative RD&D Focused on End-Use Requirements

<u>Goal:</u> Fuel cells that are competitive with incumbent and emerging technologies across applications

Efforts support clean H₂ end-use and broader market adoption objectives as outlined in the National Clean Hydrogen Strategy and Roadmap

National Clean Hydrogen Strategy and Roadmap (energy.gov)

RD&D Strategies Address Fuel Cell Challenges

Fuel Cell Technologies Funding

Program Direction

Fuel cell materials, components and integration with a focus on low cost, enhanced durability and efficiency, for HD applications

- Low-PGM catalysts and MEAs
- Membranes, ionomers
- PGM-free catalysts and electrodes
- Bipolar plates, gas diffusion layers
- Stacks and system BOP
- System analysis
- Advanced manufacturing, supply chain development, and recycling

FY24 Request \$25 M IIJA Clean H₂ Manufacturing & Recycling Provisions \$100 M/year over 5 years

RD&D Portfolio Guided by Analysis

HD Vehicle (HDV) Fuel Cell Durability-Adjusted Costs (for 25,000-hour lifetimes)

Modeled cost of a 275-kW_{net} PEMFC system

- \$302/kW_{net} at 1,000 systems/year
- \$179/kW_{net} at 50,000 systems/year
- \$170/kW_{net} at 100,000 systems/year

Cost status (2021, 2022) and interim target (2025) for a manufacturing volume of 50,000 systems/year. Future (2030, ultimate) targets at 100,000 systems/year

Stack cost breakdown

(\$112/kW_{net} at 50,000 systems/year)

- Stack cost dominates system cost
- Catalyst cost is projected to be the largest single component of stack cost

https://www.hydrogen.energy.gov/pdfs/23002-hd-fuel-cell-system-cost-2022.pdf

Focusing on Key Areas to Meet Cost Target

Pathway towards cost target requires both technology improvements and manufacturing innovations

Highlights

Million Mile Fuel Cell Truck Consortium (M2FCT)

Catalyst Development Progress

Innovations in intermetallic catalysts and supports lead to improved MEAs

- 2023 best-of-class catalyst: Intermetallic PtCo on ZIF carbon
- End of Test (EOT) after 90,000 AST cycles
- Need to further evaluate with M2FCT developed AST corresponding to heavy-duty drive cycle operation of 25,000 hours

Improved MEA performance by >45% compared to commercial baseline*

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Conditions: 0.7V, 250 kPa, 85% RH, H₂/15% O₂. Total loading: 0.3 mg_{PGM}/cm²

U.S. DEPARTMENT OF ENERGY

Advanced Electrodes for High-Power-Density Fuel Cells

Grooved electrode design enables up to **50% higher power density** than flat electrodes with the same materials, especially under the dry conditions needed for HDVs

Electrode structure can be equally important as electrode materials

Grooved electrodes separate O₂ and H⁺ transport into discrete channels for higher performance

Lee et al., Nature Energy, 2023.

MEA Accelerated Stress Test (AST) for HDVs

Draft AST incorporating catalyst, support and membrane degradation published*

Heavy Duty MEA Protocol and Metrics

Cycle	Square wave between 0.675 V (30s) and 0.925 V (30s); Single-cell 50 cm ² a				
Number	500 hours or 30,000 cycles				
Cycle time	1 minute				
Temperature	90°C				
Relative Humidity	Anode/Cathode: 50%/50%				
Fuel/Oxidant	Hydrogen/Air (H ₂ at 1000 sccm and Air at 2500 sccm for a 50 cm ² cell				
Pressure	250 kPa				
Metric	Frequency	Target			
Catalytic Mass Activity ^b	At BOT ^c , after 100h, 200h, 300h, 400h, and 500h	TBD			
ECSA/Cyclic	At BOT, after 100h, 200h, 300h,	TBD			
Voltammetry ^d	400h, and 500h				
Hydrogen Crossover ^e	At BOT, after 100h, 200h, 300h, 400h, and 500h	TBD			
Polarization curve ^f	At BOT, after 100h, 200h, 300h, 400h, and 500h	TBD			

- H₂/Air testing at 90 °C using temperature as key accelerating factor
- Inlet RH (50%) optimized to accelerate both catalyst and membrane degradation
- <u>Need to define EOT targets and correspondence</u> <u>to heavy-duty drive cycle operation of 25,000</u> <u>hours</u>

*https://millionmilefuelcelltruck.org/astwg

New M2FCT Industry and University Partner Projects Selected

<u>FOA Topic</u> M2FCT - High-Performing, Durable, Low-PGM Catalysts and Membrane Electrode Assemblies for Medium- and Heavy-Duty Applications

https://www.energy.gov/eere/fuelcells/selections-funding-opportunity-support-hydrogen-shot-and-university-research

PGM-Free Catalyst Performance Enhancement

Fe-N-C catalyst developed via a two-step, two heat-treatment approach showing ~60% (at 0.80 V) and ~45% (at 0.675 V) performance improvement over FY21 baseline

L'Innovator™ Transitions National Lab Fuel Cell Technologies to the Private Sector

Advent Technologies partnered with LANL, BNL and NREL to develop a minimum viable product from LANL ion pair HT-PEM and BNL catalyst technology

Advancing Innovative Technology

Starting up from ambient: A **world's first** for HT-PEM

YS Kim (LANL) named Recipient of Battelle's Inventor of the Year Award (2022)

Facilitating Commercial Success

L'Innovator[™] helped Advent secure ~**\$160M of investment** which enabled a new manufacturing and R&D facility in Boston, MA

Massachusetts Governor Maura Healy tours Advent's new facility

Advent

Promoting DEIA: Bridging Academia, Labs and Industry

MSI students attending

consortia meetings

Workforce Development for Minority Serving Institution (MSI) Scholars

The Partnership:

- Builds relationships between HFTO, LANL, industry and MSIs
- Provides opportunities to MSIs & scholars to participate in and perform cutting-edge fuel cell research
- Encourages MSI scholars to pursue advanced degrees and enter the H₂ and fuel cell workforce

Over 100 minority students have participated in the partnership

Activities students have been a part of:

Visit to GM facilities

University recruiting & engagement leads to more students

MOUs established with notable industry partners, including:

Sec. 40314 (EPACT Sec 815) Clean Hydrogen Manufacturing & Recycling

Sec. 40314, EPACT Sec. 815 and Related IIJA Provisions

"Clean H₂ Electrolysis Program": BIL Includes RDD&D
 across multiple electrolysis technologies, compression,
 storage, drying, integrated systems, etc. - <u>directly supports</u>
 <u>Hydrogen Shot</u>

"Clean Hydrogen Manufacturing and Recycling"				
	Raw Materials	Processed Materials	Subcomponents	End Product
Focus on manufacturing and end of life/recycling RD&D				

Regional Clean H₂ Hubs: At least 4 Hubs, geographic diversity, includes renewables, fossil + CCS, nuclear, for clean hydrogen production, multiple end use applications

H 2

National Hydrogen Strategy and Roadmap: Includes working with EPA to develop an initial clean hydrogen production standard per Sec. $822 \le 2 \text{ kg CO}_2 \text{e/kg H}_2$

Sec. 40314 (EPACT Sec 816): Clean Hydrogen Electrolysis Program; \$1 Billion over 5 years. Goal \$2/kg by 2026

Sec. 40314 (EPACT Sec 815):Clean Hydrogen Manufacturing& Recycling\$0.5 Billion over 5 years

Sec. 40314 (EPACT Sec 813): Regional Clean Hydrogen Hubs; \$8 Billion over 5 years

Sec. 40314 (EPACT Sec 814: Strategy & Roadmap and Sec. 40315 (EPACT Sec 822): Clean Hydrogen Production Qualifications)

Clean H₂ Manufacturing, Supply Chain Development, and Recycling

Growth required across domestic clean H₂ supply chains

Example: PEM fuel cell & electrolyzer supply chain

Addressing opportunities to:

- Bridge the gap between technology development and deployment
- Enable manufacturing scale-up to achieve economies of scale benefits
- Facilitate the reuse and recycling of materials and components

Efforts will support national decarbonization goals by helping remove barriers to the widespread at-scale deployment of clean H₂ technologies

Advanced Manufacturing of Fuel Cell Assemblies and Stacks

Analysis of manufacturing (and recycling) processes to identify the economics, life cycle, environment and social impacts of H₂ technologies Established a near-term target (2027) for HD fuel cell manufacturing capacity:

20,000 HD fuel cell stacks per year in a single production line, while still aiming towards the 2030 DOE targets for cost, durability, and efficiency

Component	Rate
Stack	6 stacks/hour
MEA	2,400 MEAs/hour
BPP	2,400 BPPs/hour
GDL	650,000 m ² /year
Membrane	370,000 m ² /year
Catalyst	1,300 kg PGM/year

These are estimated component manufacturing rates commensurate with the stack manufacturing capacity target.

Clean H₂ Technologies Recycling

Goal: Create innovative and practical approaches to enable the recovery, recycling and reuse of clean H₂ technologies

Strategy:

 Establish a Recovery and Recycling Consortium comprising diverse stakeholders to address end-of-life and critical supply chain challenges for fuel cell and electrolyzer systems.

Priorities for PEM technologies include:

- PGM reclamation RD&D (Pt and Ir)
- Ionomer/membrane recycling from MEAs
- Development and use of analysis tools
- Efficient and automated disassembly
- Reuse of recovered materials and components
- Designing for recyclability

Hydrogen Eligible for \$4 billion in Manufacturing Tax Credits

What is 48C?

- Competitively-awarded Investment Tax Credit (ITC) established in 2009 with \$2.3B
- Expanded by IRA with \$10B available
- Projects receive up to 30% investment tax credit
- DOE will accept a first round of applications in 2023 to allocate up to \$4B
- Approximately 40% of credits (\$1.6B) will be allocated to projects in coal communities

Timeline & Review

Notice Released: May 31

Informational Webinar: June 27

Concept Papers Due: July 31

Full Applications Due: Fall 2023

Reductions

and Recycling

Collaborations, Milestones, Team

Collaboration Network

Fostering technical excellence, economic growth and environmental justice

Highlights and Milestones

FY2022	FY2023	FY2024
Improved MEA performance at a PGM loading of 0.3 mg _{PGM} /cm ² by over 15% compared to commercial baseline	Improved MEA performance at a PGM loading of 0.3 mg _{PGM} /cm ² by over 45% compared to commercial baseline	Improve MEA performance at a PGM loading of 0.3 mg _{PGM} /cm ²
Improved PGM-free cathode H ₂ -air initial fuel cell performance by 25% compared to FY21 baseline	Improved PGM-free cathode H ₂ -air initial fuel cell performance by ~60% compared to FY21 baseline	Improve PGM-free cathode H ₂ -air initial fuel cell performance
Solicited M2FCT FOA projects	Solicited and selected M2FCT FOA projects	Solicit and select M2FCT FOA projects
Met durability adjusted HDV cost of \$179/kW at 50,000 systems/year	Meet durability adjusted HDV cost of \$170/kW at 50,000 systems/year	Meet durability adjusted HDV cost of \$155/kW at 50,000 systems/year
Initiated Sec. 815 efforts on Clean H ₂ Manufacturing and Recycling	Solicit and review Sec. 815 Manufacturing projects and Recovery & Recycling consortium	Initiate Sec. 815 Manufacturing projects and launch Recovery & Recycling consortium

The Team

Dimitrios Papageorgopoulos Fuel Cell Technologies Program Manager Dimitrios.Papageorgopoulos@ee.doe.gov

Technology Managers

Scan for Open Positions

Greg Kleen

Will Gibbons Donna.Ho@ee.doe.gov Gregory.Kleen@ee.doe.gov Willam.Gibbons@ee.doe.gov **Eric White**

Eric.White@ee.doe.gov

Open position Technology Manager

Open position Technology Manager

Open position Technical Project Officer

28

Thank You

Dr. Dimitrios Papageorgopoulos Program Manager, Fuel Cell Technologies, HFTO Dimitrios.Papageorgopoulos@ee.doe.gov

hydrogenandfuelcells.energy.gov

Agenda – Fuel Cell Technologies

	Tuesday, June 6, 2023	Wednesday, June 7, 2023		Thurs	day, June 8, 2023		
	Fuel Cell Technologies						
8:00 AM	Continental Breakfast						
9:00 AM	FC000 Fuel Cell Technologies Subprogram Overview Dimitrios Papageorgopoulos, HFTO	FC337 Cummins PEM Fuel Cell System for Heavy Duty Applications Jean St-Pierre, Cummins Inc.	FC354 L'Innovator Program Emory De Castro, Advent Technologies				
9:30 AM	EC160 ElectroCat 2.0 (Electrocatalysis Consortium)	FC338 Domestically Manufactured Fuel Cells for Heavy-Duty Applications Karen Swider Lyons, Plug Power	FC333 Advance And	33 Advanced Membranes for Heavy Duty Fuel Cell Tru Andrew Baker, Nikola Motor Company		s	
10:00 AM	Deborah Myers, ANL & Piotr Zelenay, LANL	FC167 FY22 SBIR IIC: Multi-Functional Catalyst Support Minette Ocampo, pH Matter, LLC	FC336 A Systematic Approach to Developing Durable, Conductive Membranes for Operation at 120C Tom Zawodzinski, University of Tennessee - Knoxville		ive	Flow Pla	
10:30 AM		Break					
11:00 AM		FC344 Low-Cost Corrosion-Resistant Coated Aluminum Bipolar Plates by Elevated Temperature Formation and Diffusion Bonding Tianli Zhu, Raytheon Technologies Research Center	Y FC330 High Efficiency Reversible Solid Oxide Syste Hossein Ghezel-Ayagh, FuelCell Energy, Inc.		ncy Reversible Solid Oxide System el-Ayagh, FuelCell Energy, Inc.		
11:30 AM	FC339 M2FCT: Million Mile Fuel Cell Truck Consortium Rod Borup, LANL & Adam Weber, LBNL	FC345 Development and Manufacturing for Precious Metal Free Metal Bipolar Plate Coatings for PEM Fuel Cells CH Wang, Treadstone Technologies, Inc.	FC331 A Novel Stack Approach to Enable High Round Trip Efficient in Unitized PEM Regenerative Fuel Cells Katherine Ayers, Nel Hydrogen			ncies	Oxygen
12:00 PM		FC346 Fully Unitized Fuel Cell Manufactured by a Continuous Process Jon Owejan, Plug Power	FC317 Stationary Direct Methanol Fuel Cells Using Pure Methanol Xianglin Li, University of Kansas				
12:30 PM	Lunch						
1:45 PM	FC353 Fuel Cell Cost and Performance Analysis Brian James, Strategic Analysis, Inc.	FC347 Development of Low Cost, Thin Flexible Graphite Bipolar Plates for Heavy Duty Fuel Cell Applications David Chadderdon, NeoGraf Solutions, LLC		We	dnesday, June 7 Poster Presentat	ions 5:	:30–7:00 p.m.
	FC323 Durable Fuel Cell MEA through Immobilization of	FC348 Fuel Cell Bipolar Plate Technology Development for Heavy Duty		Fuel Cell Technologies			
2:15 PM	Catalyst Particle and Membrane Chemical Stabilizer Nagappan Ramaswamy, GM	Applications Siguang Xu, GM		FC335	Extended Heavy Duty Polymers for Electrolyte Membrane Lifetimes	Tom Lubri:	Corrigan, The
2:45 PM	FC326 Durable MEAs for Heavy-Duty Fuel Cell Electric Trucks John Slack, Nikola Motor Company	FC349 Foil Bearing Supported Compressor-Expander Giri Agrawal, R&D Dynamics Corporation		FC341	Advanced AEMFCs through Material Innovation	Yu Seung Kim, LANL	
3:15 PM		Break		FC342	Advanced Ionomers & MEAs for Alkaline Membrane Fuel Cells (AMFCs)	Bryar	n Pivovar, NREL
3:45 PM	FC327 Durable High Power Density Fuel Cell Cathodes for Heavy-Duty Vehicles Shawn Litster, Carnegie Mellon University	FC350 High Efficiency and Transient Air Systems for Affordable Load- Following Heavy-Duty Truck Fuel Cells		FC343*	FY20 SBIR II: Improved lonomers and Membranes for Fuel Cells	Chris To Tech	opping, Tetrame hnologies, LLC
4:15 PM	FC356 FY22 SBIR II: Durable High Efficiency Membrane and Electrode Assemblies for Heavy Duty Fuel Cell Vehicles Gang Wu, University of Buffale	FC351 Durable and Efficient Centrifugal Compressor-Based Filtered Air Management System and Optimized BOP Mike Bunce, Mable Powertrain, LLC		FC361*	FY22 SBIR I: Durable Bulk Metallic Glass Catalysts for Medium and Heavy-Duty PEM Fuel Cells	Evger Super	nia Pekarskaya, cool Metals LLC
	EC355 LANI Minority Serving Institution Program	FC352 Leveraging ICE Air System Technology for Fuel Cell System Cost		FC362	FY22 STTR I: Mobile Fuel Cell Generator	Paul So	cott, RockeTruck, Inc.
4:45 PM	Tommy Rockward, LANL	Reduction Paul Wang, Caterpillar, Inc.		FC363	Advanced FC Vehicle DC-DC Converter Development	Vive	k Sujan, ORNL

Session Logistics

General Information

- This meeting is a review, not a conference
 - Questions will be taken first from reviewers, and then from other audience members as time allows
 - Remote reviewers are reminded to enter their questions in CHAT
 - Remote general attendees can enter questions or comments into Q&A
- The schedule will be strictly followed so that reviewers can move between sessions
- Presentations are 20 minutes followed by 10 minutes Q&A

Your input on our Program and subprograms helps guide our decisions.

Thank you for your thoughtful, objective, and timely feedback!

Save the date! 2024 DOE Hydrogen Program AMR May 6-9, 2024

Visit H2tools.Org For Hydrogen Safety And Lessons Learned https://h2tools.org/

Sign up to receive hydrogen and fuel cell updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Learn more at: energy.gov/eere/fuelcells AND www.hydrogen.energy.gov

U.S. DEPARTMENT OF ENERGY