

Fossil Energy and Carbon Management

FECM's Hydrogen Activities

June 6th, 2023 Evan Frye, Program Manager, Office of Resource Sustainability Eva Rodezno, Program Manager, Office of Carbon Management

FE to FECM – A New Mission

FECM's focus:

 Mitigation of environmental impacts from resource recovery and use

 Management of carbon dioxide emissions, including legacy emissions New climate goals:

- ≻50% emissions reduction by 2030
- ≻100% clean electricity by 2035
- ≻Net-zero carbon emissions by

2050

FECM RDD&D Priorities

Advance Carbon Dioxide Removal & Low Carbon Supply Chains for Industry

Low-Carbon Industrial Supply Chains

Demonstrate and Deploy Point Source Carbon Capture

Advance Critical Minerals, Rare Earth Elements (REE), and Mine Remediation

Accelerate Carbon-Neutral Hydrogen (H₂)

Increase Efficient Use of Big Data and Artificial Intelligence

Reduce Methane Emissions

Address the Energy Water Nexus

Invest in Thoughtful Transition Strategies

FECM Hydrogen Equities

Underground Storage

• Use • Turbines • Solid Oxide Fuel Cells

Pipeline Transport

Advanced Turbines Program

Advanced Combustion Turbines

Syngas, natural gas, H₂, NH₃ Fuels (NGCC)
Achieve low NOx emissions

OVERALL GOAL:

Large frame, industrial and aeroderivative turbines able to fire 100% H_2 by 2030

Advanced Gasification Program

Gasification Process Improvements	 Modular design integration capability for cost reduction Microwave-assisted gasification
Air Separation Technology	 Reduce oxygen production costs (membranes, novel cryogenics, advanced sorbents, etc.)
Achieving Negative CO ₂ Emissions	 Reduce CO₂ emissions using biomass & CCS Process Intensification

SOFC Program

Enable:

- Highest efficiency and lowest cost electric power generation from hydrogen
- Efficient and cost-effective distributed/utility scale hydrogen production
- Flexible, modular, hybrid SOFC/SOEC system design

Cell and Stack Performance Improvements

Proof-of-Concept Systems

(courtesy LG Fuel Cell Systems)

Advanced Energy Materials Program

Goals:

- Evaluate impacts of hydrogen on materials using modeling tools.
- Enhance the nation's supply chain for high-temperature materials and create a skilled workforce.
- Develop Ceramic Matrix Composite (CMC) materials for turbines to address 70% efficiency and turbines firing 100% hydrogen.

Sensors, Controls and Novel Concepts Portfolio

- Advanced sensors for new hydrogen technologies
- Control and optimization strategies for new hybrid systems (SOFC with H₂ turbine, etc.)
- Operations-based predictive maintenance

Simulation Based Computational Tools

IDAES + MFiX: Working together to increase confidence systems modeling realism and fidelity

COMPUTATIONAL TOOLS WORKING TOGETHER

- **IDAES** is a process systems engineering framework for the design and optimization of innovative steady state and dynamic processes
- MFiX is a suite of multiphase flow simulation software for designing and troubleshooting devices such as gasifiers and combustors

Carbon Capture Program

Small Pilots

Large Pilots

TRL 5-7

FEED Studies

What we've learned in 20+ years:

- "First generation" (e.g. liquid solvent) systems work:
 - At commercial scale at some power plants and industrial facilities
 - With high efficiency (90+%) at moderate cost
 - With manageable non-CO2 pollution

What we're learning now:

- Which "next generation" systems have the greatest potential
- How to increase capture efficiencies (>95%)
- How to enable low carbon supply chains (i.e., cement, steel, hydrogen, etc.)
- Co-Benefits Analysis..How to further reduce other pollutants
- How to accelerate deployment

Energy.gov/FECM

Carbon Transport and Storage Program

CO₂ Transport

- FEED studies for large-scale transport networks
- Cost analyses for build-out scenarios
- Sensors for corrosion and metallurgy

Storage

- Well integrity and mitigation
- Monitoring, verification, and accounting
- Storage complex efficiency and security

Hydrogen Energy Earthshot Initiative (HEEI)

Analyses to Identify Pathways to Achieve the Hydrogen Shot

- ✓ Baseline studies for most commercial pathways
- Ongoing study on methane pyrolysis pathways to achieve the HEEI
- Significant cost reductions could come from unit siting choices, natural gas market conditions and by-product sales
- FECM continues to fund R&D, pre-FEED, FEED studies and demonstrations that can result in lower costs of clean hydrogen.

Membranes & Sorbents for CCS

Process Intensifications (WGS, Reforming)

fecm.energy.gov

How FECM Efforts Fit In With Other DOE Offices

EERE	FECM	Nuclear Energy		
 Feedstocks: Renewables and Water Technologies: Electrolysis – Low- and High- Temperature Advanced Water Splitting – Solar/High-Temp Thermochemical, Photoelectrochemical Biological Approaches 	 Feedstocks: Fossil Fuels – Natural Gas and Solid Wastes Technologies: Gasification, Reforming, Pyrolysis Carbon Capture & Storage Advanced Approaches – Co- firing and Modular Systems SOFCs/SOECs/rSOFCs 	 Feedstocks: Nuclear Fuels and Water Dechnologies: Electrolysis Systems for Nuclear Advanced Nuclear Reactors Systems Integration and Controls LWRs and Advanced Reactors 		
Areas of Collaboration				

Reversible Fuel Cells, Biomass, Municipal Solid Waste, Plastics, Polygeneration, High-Temperature Electrolysis, Systems Integration

Funding Opportunities

FOA 2400: Fossil Energy Based Production, Storage, Transport and Utilization of Hydrogen Approaching Net-Zero or Net-Negative Carbon Emissions

- First issued in FY21
- \$63M awarded to date, 30 awards made
- 17 Topic Areas spanning clean hydrogen production, transportation, use and storage, and additional enabling topics such as sensors & controls, CCS, ammonia turbines
- Opens and closes with different topic areas active at any time

To Find Funding Opportunities, Visit:

- Fedconnect.com
- Grants.gov
- SAM.gov

Filter/Search for DOE to find open solicitations!

Fossil Energy and Carbon Management

FY2023 Natural Gas Decarbonization and Hydrogen Technologies (NG-DHT) Program Overview

Evan Frye Office of Resource Sustainability Office of Fossil Energy and Carbon Management June 6, 2023

Methane Mitigation Technologies Division

Methane Emissions Mitigation

Advanced materials, data management tools, inspection and repair technologies, and dynamic compressor R&D for eliminating fugitive methane emissions across the natural gas value chain

Methane Emissions Quantification

Direct and remote measurement sensor technologies and collection of data, research, and analytics that quantify methane emissions from point sources along the upstream and midstream portion of the natural gas value chain

Natural Gas Decarbonization and Hydrogen Technologies

Technologies for clean hydrogen production, safe and efficient distribution, and geologic storage technologies supported by analytical tools and models

Undocumented Orphaned Wells Research

Developing tools, technologies, and processes to efficiently identify and characterize undocumented orphaned wells in order to prioritize them for plugging and abandonment.

Natural Gas Decarbonization and Hydrogen Technologies

- The Natural Gas Decarbonization and Hydrogen Technologies (NG-DHT) Program was formally initiated in 2022 Omnibus.
- The NG-DHT Program coordinates with other DOE offices to support the transition towards a clean hydrogen-enabled economy through the decarbonization of natural gas conversion, transportation, and storage.
 - Supports transformational concepts for clean hydrogen production from domestic natural gas resources, with emphasis on decarbonization opportunities and value tradeoffs within energy markets.
 - Works to ensure the suitability of existing natural gas pipelines and infrastructure for hydrogen distribution, while emphasizing technology opportunities to detect and mitigate emissions.
 - Identifies underground storage infrastructure to handle high volume fractions of hydrogen, while seeking demonstration opportunities for novel bulk storage mechanisms.

		Near Term	Long Term
Con	iversion	NG to Clean H2	Widespread transformational natural gas reforming / conversion
Trans	portation	Distribution from on-site production Geographic Assessment	Blending in natural gas pipelines Widespread pipeline transmission and distribution Chemical H ₂ carriers
St	orage	H2 Recoverability	Geologic H ₂ storage (e.g., depleted oil/gas reservoirs, caverns) Chemical H ₂ carriers Materials-based H ₂ storage
U.S. DEPARTM	RGY Foss	il Energy and on Management w	vww.energy.gov/fecm

FOA2400 - Fossil Energy Based Production, Storage, Transport and Utilization of Hydrogen Approaching Net-Zero or Net-Negative Carbon Emissions

- AOI 14 Clean Hydrogen Production and Infrastructure for Natural Gas Decarbonization
 - AOI 14a Methane pyrolysis/decomposition, in situ conversion, or cyclical chemical looping reforming
 - AOI 14b Hydrogen Production from Produced Water
- AOI 15 Technologies for Enabling the Safe and Efficient Transportation of Hydrogen Within the U.S. Natural Gas Pipeline System
- AOI 16 Fundamental Research to Enable High Volume, Long-term Subsurface Hydrogen Storage

NETL RIC Natural Gas Decarbonization and Hydrogen Technologies

• Production of Hydrogen and Carbon from Associated Gas Catalytic Pyrolysis

Assessment of State-of-the-art H2 Production via Pyrolysis

- H2 Sensing Materials Development for Safe Hydrogen Transportation
- Advanced Multi-functional Electrochemical H2 Sensor
- Real-time in-Pipe Gas Blend Monitoring with Raman Gas Analyzer

• Techno-economic Pipeline Model for Transporting Blends of Natural Gas and Hydrogen

Comparison of Commercial, State-of-the-Art, Fossil-Based Ammonia Production Technologies

Subsurface Hydrogen Assessment Storage & Technology Acceleration (SHASTA)

Identify and address key technological hurdles and develop tools and technologies to enable broad public acceptance for subsurface storage of pure hydrogen and hydrogen/natural gas mixtures

Specific Goals:

- Quantify operational risks
- Quantify potential for resource losses
- Develop enabling tools, technologies, and recommended practices
- Develop a collaborative field-scale test plan in partnership with relevant stakeholders

Focus on reservoir performance and well component compatibility in the storage system

 Pipelines and surface components upstream from the wellhead are covered by separate DOE research activities

SHASTA – Interagency Agreement with U.S. DOT PHMSA

Goal:

 Leverage expertise at the U.S. Department of Energy's National Laboratory system through the Office of Fossil Energy and Carbon Management (FECM) funded SHASTA project to provide PHMSA with the scientific basis to support safe and effective regulatory guidance and oversight for underground hydrogen storage (UHS).

Purpose:

- Identifying sources for potential hydrogen resource and storage reservoir asset loss
- Identifying possible mitigations/remedies relative to governing entities that may have regulatory primacy or authority

Objectives:

- Identify regulatory needs for Underground Gas Storage (UGS) operations to define UHS metrics
- Assess existing UGS facilities' suitability for hydrogen storage
- Quantify operational expectations and risk for H2 resource loss and asset degradation based on geologic and operational conditions

NG-DHT Technology Development Timeline

Technology Transfer

- Assessing Compatibility of Natural Gas Pipeline Materials with Hydrogen, CO2, and Ammonia – ORNL
- <u>Hydrogen Storage Potential in U.S. Underground Gas Storage Facilities</u> SHASTA
- Liquid Organic Hydrogen Carriers Technical and Market Assessment and Cost Model Overview – NETL (publication pending)
- Underground Storage of Hydrogen and Hydrogen/Methane Mixtures: Influence of Reservoir Factors and Engineering Choices on Feasibility, Storage Operations, and Risks – SHASTA (manuscript under review)
- Managing Reservoir Dynamics When Converting Natural Gas Fields to Underground Hydrogen Storage SHASTA (manuscript under review)
- November 6-9, 2023 Resource Sustainability Project Review Meeting – Pittsburgh, PA

Fossil Energy and Carbon Management

Questions?

Fossil Energy and Carbon Management

BACKUP

FECM Strategic Vision

Justice, Labor, and Engagement

Technologies that Lead to Sustainable Energy Resources

FECM Role Achieving Net-Zero Greenhouse Gases

FECM's *Strategic Vision* will enable DOE to make strategic carbon management decisions to ensure that fossil fuel usage is put into proper context with climate change and is designed for a future that achieves and maintains net-zero greenhouse

gas emissions.

Carbon Management Approaches toward Deep Decarbonization

Read FECM's Entire Strategic Vision by Scanning the Code Above

Fossil Energy and Carbon Management

How FECM Efforts Fit In With EERE

EERE

Feedstocks:

Renewables and Water

Technologies:

- Electrolysis Low- and High-Temperature
- Advanced Water Splitting Solar/High-Temp Thermochemical, Photoelectrochemical
- Biological Approaches

Feedstocks:

 Fossil Fuels – Natural Gas and Solid Wastes

FECM

Technologies:

- Gasification, Reforming, Pyrolysis, CCS
- Methane Pyrolysis
- Advanced Approaches Cofiring and Modular Systems

Areas of Collaboration

Reversible Fuel Cells, Biomass, Municipal Solid Waste, Plastics, Polygeneration, High-Temperature Electrolysis, Systems Integration

Hydrogen with Carbon Management Division

Enable:

- Non-traditional feedstocks such as MSW, waste coal and biomass
- Hydrogen end use in electricity and other energy sectors
 - Solid Oxide Fuel Cells
 - Hydrogen Turbines
- Crosscutting technologies such as Advanced Materials, Sensors and Controls and Simulation Based Engineering

Office of Carbon Management Hydrogen Goals

<u>Goals:</u>

Gasification systems:

- \circ Hydrogen production with at least 98% CO₂ capture
- Small, modular gasification systems to accelerate construction and reduce installed costs
- \circ Produce hydrogen at less than \$1/kg H₂

• Turbines:

 $_{\odot}\,$ Large frame (utility scale), aeroderivative, and industrial scale turbines able to fire 100% $\rm H_{2}$ by 2030

Office of Carbon Management Hydrogen Goals

<u>Goals:</u>

SOFC/SOECs:

 $_{\odot}$ Enable reversibility for hydrogen production $_{\odot}$ Cell materials and fabrication to improve performance and lower cost

 $_{\odot}$ Understanding cell and stack degradation mechanisms

• CCS:

 \odot Increase capture rates and efficiencies \odot Lower costs

Office of Carbon Management Hydrogen Goals

<u>Goals:</u>

Crosscutting technologies:

Enable hydrogen sensing for harsh environments
 Market analyses of hydrogen production & sale
 Reactor and process design simulation tools
 High temperature, hydrogen tolerant materials

Targeted Areas for Turbine Improvement

Transition Turbine Improved transition design Improved aerodynamics, longer to shorten combustion path airfoils for a larger annulus / higher to first stage and increase mass flow and improved internal temperature to the turbine cooling designs to minimize cooling flows while at higher temperatures Leakage Reduced leakage at tip and wall Combustor interface and reduced recirculation **Materials** at nozzle/rotating airfoil interface for Combustion of hydrogen and higher turbine efficiency and less NG fuels with single digit Improved TBC, bond coats, base NOx. no flashback and alloys and CMCs for higher heat purge minimal combustion flux, thermal cycling and aggressive instability conditions (erosion, corrosion and deposition) in IGCC applications Photo courtesy of Siemens Energy

Current Gasification System Research

Modular Technology: Helping Gasification Access New Markets

Smaller, modular gasifier

SOFC R&D Goals

Cell and Stack Degradation Modeling

- Development of comprehensive predictive modeling tool
- Atoms to system scale bridging
- Validation through experiment

Electrode Engineering

- Mitigation of prominent degradation modes
- Improved materials & fabrication to improve performance
- Enable reversibility for hydrogen production

Systems Engineering and Analysis

- Public dissemination of SOFC market potential, performance, and cost advantages
- Hybrid configuration
 assessment

SOFC Program – Technology Evolution

37

Simulation Based Engineering

Simulation-based engineering tools are critical to achieving policy priorities

- Model technologies and systems to manage and reduce carbon across the full life cycle
- Allows DOE to meet or exceed 2035 and 2050 goals for decarbonization

Modeling/Simulation is an essential design step

- SBE has unique toolsets to solve complex problems that cannot be otherwise understood
- FECM/NETL has developed and successfully applied SBE tools for overcoming challenges to FECM technologies

Challenges and Opportunities for Future Energy Systems

<u>An evolving</u> <u>energy ecosystem</u> <u>requires greater</u> <u>flexibility</u>

Simulation-based engineering remains pivotal to technology transition

Approaches to Carbon Capture

Solvents

Membranes

Sorbents

