

HFTO Hydrogen Production Overview

David Peterson, HFTO – Hydrogen Production Program Manager

2023 Annual Merit Review and Peer Evaluation Meeting

June 6, 2023 – Arlington, VA

The Hydrogen and Fuel Cell Technologies Office (HFTO)

Mission

Support research, development and demonstration (RD&D) of hydrogen and fuel cell technologies to advance:

- Clean Energy and Emissions Reduction Across Sectors
- Job Creation and a Sustainable and Equitable Energy Future

Office Sub-Programs

Hydrogen Technologies

Hydrogen Production

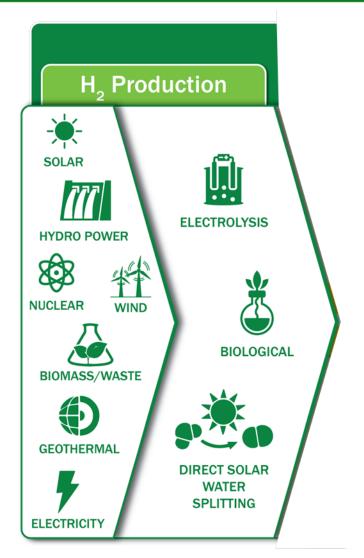
Hydrogen Infrastructure

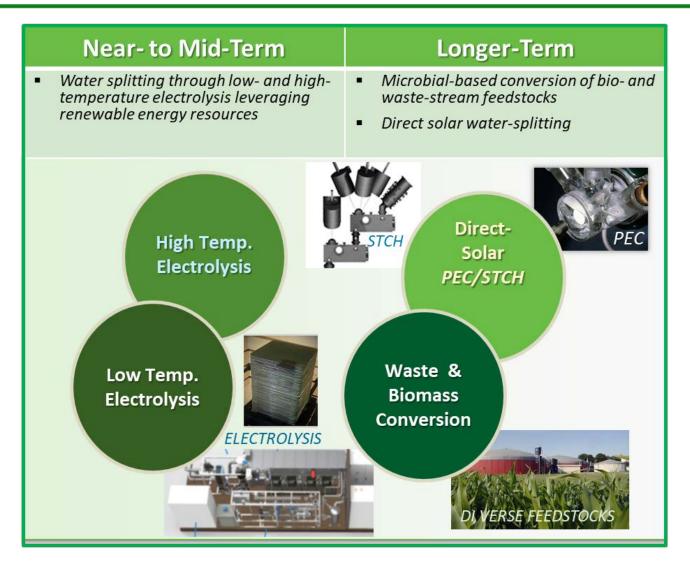
Fuel Cell Technologies

Materials & Components

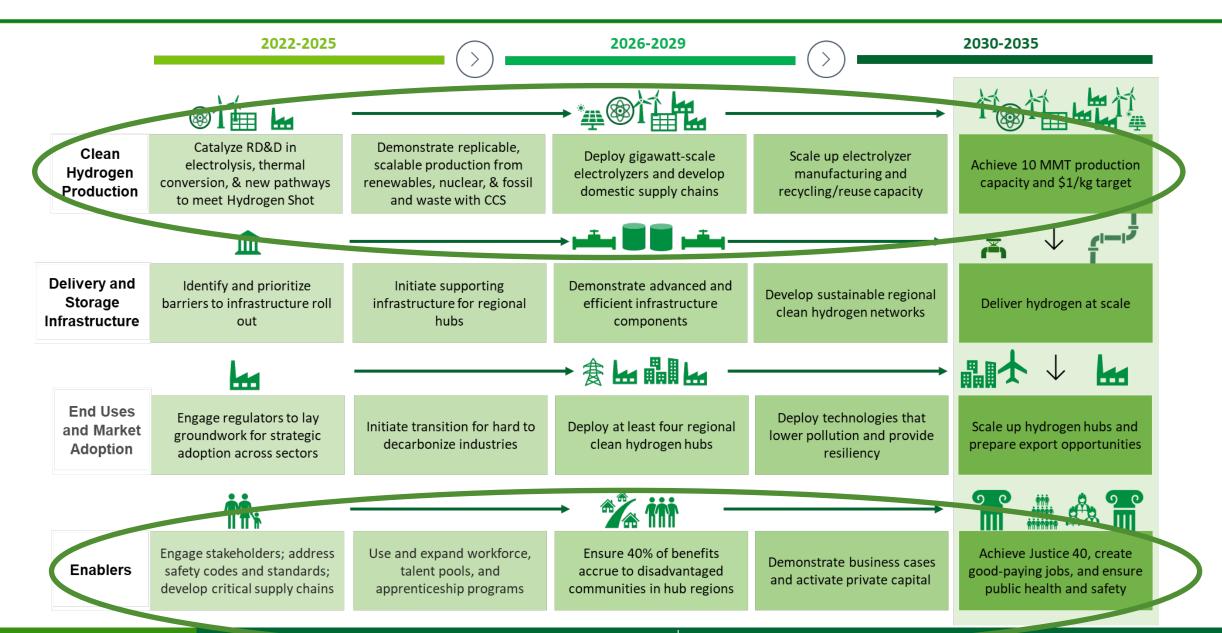
Systems

Systems Development & Integration

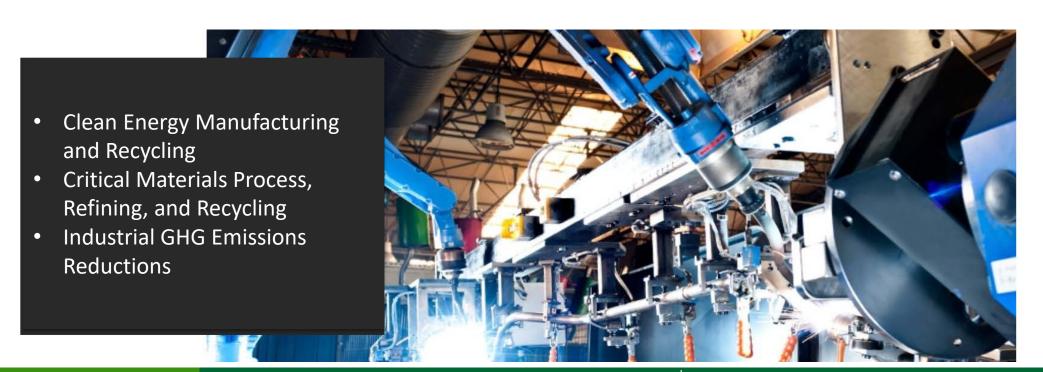

Industrial and Chemical Applications


Grid Energy Storage and Power Generation

Data, Modeling, Analysis, Safety, Codes and Standards


Hydrogen Production Program Overview

Focus on hydrogen production pathways that utilize renewable/clean resources

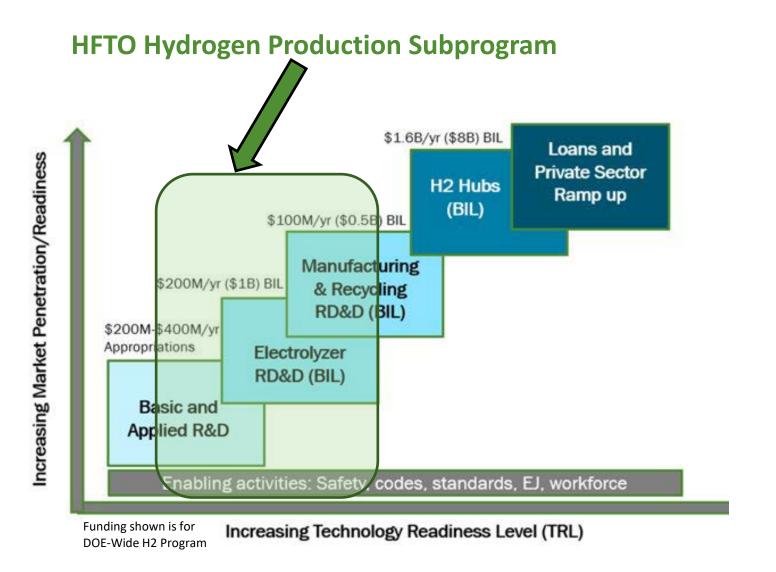

Alignment with DOE Draft National Strategy and Roadmap

Hydrogen Eligible for \$4 billion in Manufacturing Tax Credits

What is 48C?

- Competitively-awarded Investment Tax Credit (ITC) established in 2009 with \$2.3B
- Expanded by IRA with \$10B available
- Projects receive up to 30% investment tax credit
- DOE will accept a first round of applications in 2023 to allocate up to \$4B
- Approximately 40% of credits (\$1.6B) will be allocated to projects in coal communities

Timeline & Review


Notice Released: May 31

Informational Webinar: June 27

Concept Papers **Due:** July 31

Full Applications **Due:** Fall 2023

Alignment with Hydrogen Program RDD&D Portfolio

Core Activities

- Advanced, clean hydrogen production pathways
- Techno-economic analysis
- Hydrogen Shot Incubator Prize
- Consortia

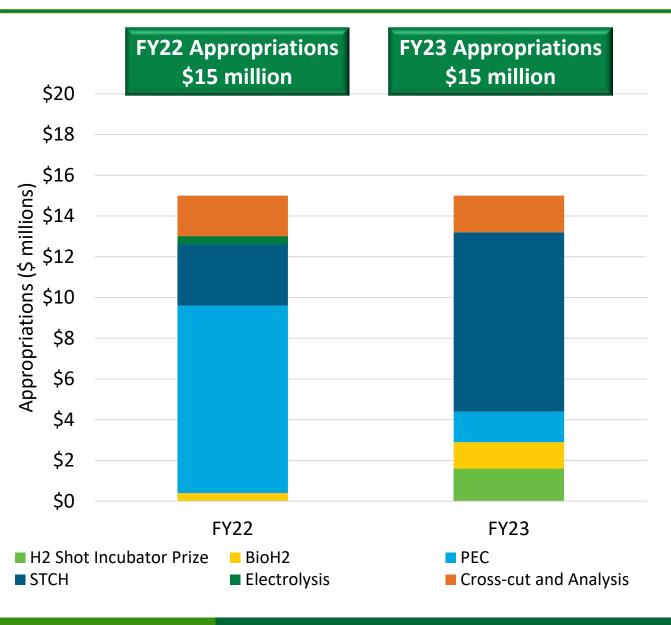
BIL/IRA Activities

- Clean Hydrogen Electrolysis Program
- Clean Hydrogen Manufacturing and Recycling Program
- Consortia
- BIL FOA and Lab Call
- Multi-MW scale electrolyzer system testing and validation

Clean Hydrogen Electrolysis Program: BIL Sec. 40314 (EPACT Sec. 816)

\$1,000,000,000 over 5 years (fiscal years 2022 through 2026)

Goal:


Reduce and validate the cost of hydrogen produced using electrolyzers* to **less than \$2 per kilogram** of clean hydrogen by 2026

Program Description:

Establish a <u>research</u>, <u>development</u>, <u>demonstration</u>, <u>commercialization</u>, and <u>deployment</u> program for purposes of commercialization to <u>improve the efficiency</u>, <u>increase the durability</u>, and <u>reduce the cost</u> of producing clean hydrogen using electrolyzers.

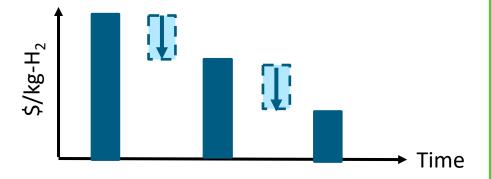
^{*}The term 'electrolyzer' means a system that produces hydrogen using electrolysis. The term 'electrolysis' means a process that uses electricity to split water into hydrogen and oxygen.

Hydrogen Production Core Budget*

Program Direction

H2 Production

- Direct Water Splitting
 - PEC and STCH
- Biological hydrogen production
- H2 Shot Incubator Prize
- All electrolysis work is being supported under the BIL Sect. 816 Clean Hydrogen Electrolysis Program as well as Sect. 815 Clean Hydrogen Manufacturing and Recycling Program

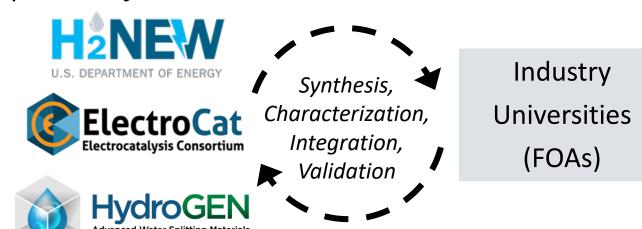

FY24 Request \$15 million Clean H₂ Electrolysis Program \$200 M/yr over 5 yrs

*Core budget complements BIL funding

H₂ Production: RD&D Strategy/Approach

Metrics-Driven RDD&D Approach

Technoeconomic analyses to guide priorities, track progress, & set targets


Example: H2NEW Electrolyzer Stack Goals (2026)					
	PEM	HTE			
Capital Cost	\$100/kW	\$125/kW			
Performance	3 A/cm ² @ 1.8 V	1.2 A/cm ² @ 1.28 V			
Lifetime	80,000 hr	40,000 hr			

https://www.energy.gov/eere/fuelcells/hydrogen-production-related-links#targets

Stakeholder Engagement: Provides feedback to inform strategy; Includes Workshops, RFIs, Consortia Stakeholder Advisory Boards

Consortia Model for Enhanced Collaboration

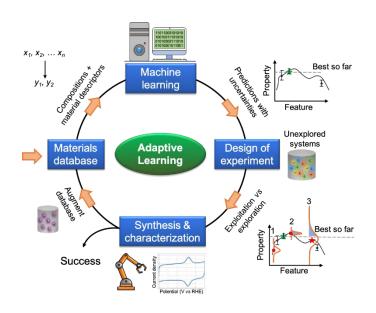
Leverage world-class national lab expertise & facilities with...

...an <u>influx</u> of new ideas and partners

H₂ Production: Consortia-Supported RD&D

Materials development for:

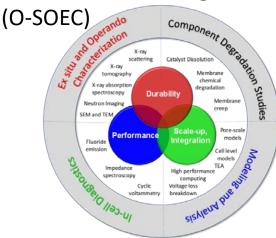
- Photoelectrochemical (PEC)
- Solar thermochemical (STCH)
- High-temperature electrolysis (HTE)
- Low-temperature electrolysis (LTE)


https://h2awsm.org/

Presentation: P148 (Tuesday, 9:30am)

Posters: P148A-E (Tuesday)

PGM-free catalyst development for LTE


http://www.electrocat.org

Presentation: FC160 (Tues., 9:30 am)

Component integration, accelerated stress test development for:

- Proton exchange membrane (PEM)
- Liquid alkaline (LA)
- Oxide ion-conducting solid oxide

https://h2new.energy.gov/

Presentation: P196 (Tuesday, 1:45pm)

Posters: P196A-H (Tuesday)

Hydrogen Production Advanced Pathways

New Direct Solar Water Splitting PEC & STCH Projects

DE-FOA-0002792 "Funding Opportunity in Support of the Hydrogen Shot and a University Research Consortium on Grid Resilience" Topic 1: HydroGEN: Solar Fuels from Photoelectrochemical and Solar Thermochemical Water Splitting

	Selectee	Project Title	PI	Total Award Amount	Total DOE Share	Recipient Cost Share
	University of Michigan	Gallium Nitride (GaN) Protected Tandem Photoelectrodes for High Efficiency, Low cost, and Stable Solar Water Splitting	Zetian Mi	\$1,250,000	\$1,000,000	\$250,000
	Yale University	>200 cm2 Type-3 PEC Water Splitting Prototype Using Bandgap-Tunable Perovskite Tandem and Molecular-Scale Designer Coatings	Shu Hu	\$1,250,086	\$1,000,000	\$250,086
EC	California Institute of Technology	Demonstration of a Robust, Compact Photoelectrochemical (PEC) Hydrogen Generator	Joel A. Haber	\$1,250,000	\$1,000,000	\$250,000
٩	University of Hawaii	Semi-Monolithic Devices for Photoelectrochemical Hydrogen Production	Nicolas Gaillard	\$1,250,000	\$1,000,000	\$250,000
	Rice University	Scalable halide perovskite photoelectrochemical cell mini modules with 20% solar-to-hydrogen efficiency and 1000 hours of diurnal durability	Aditya D. Mohite	\$1,180,307	\$937,242	\$243,065
	The University of Toledo	All-Perovskite Tandem Photoelectrodes for Low-Cost Solar Hydrogen Fuel Production from Water Splitting	Yanfa Yan	\$1,250,000	\$1,000,000	\$250,000
	University of Colorado	Non-intermittent, Solar-thermal Processing to Split Water Continuously via a Near-isothermal, Pressure-Swing Redox Cycle	Alan W. Weimer	\$1,250,000	\$1,000,000	\$250,000
_	University of Colorado	Accelerated Discovery and Development of Perovskites for Solar	Charles Musgrave	\$1,250,000	\$1,000,000	\$250,000
5	Arizona Sate University	Inverse Design of Perovskite Materials for Solar Thermochemical Water	Christopher Muhich	\$1,250,000	\$1,000,000	\$250,000
ST	The Washington University	Ca-Ce-Ti-Mn-O-Based Perovskites for Two-Step Solar Thermochemical Hydrogen Production Cycles	Robert B. Wexler	\$1,248,860	\$998,860	\$250,000
	Saint-Gobain	Scalable Solar Fuels Production in A Reactor Train System by Thermochemical Redox Cycling of Novel Nonstoichiometric Perovskites	Xin Qian	\$1,250,079	\$999,997	\$250,082

Projects will be part of the HydroGEN Consortium and have access to national lab expertise

New Awards in PGM-free Catalyst & Electrodes for Electrolyzers & Fuel Cells

DE-FOA-0002598 FOA (Joint with FECM), "University Training and Research for Fossil Energy and Carbon Management – Minority Serving Institutions (MSIs). AOI 6 – PGM-free Catalyst and Electrodes for Fuel Cells and Electrolyzers

Selectee	Project Title	PI	Total Award Amount	Total DOE Share	Recipient Cost Share
University of Texas, El Paso	Metal-Organic Framework-Based Heterostructure Electrocatalysts With Tailored Electron Density Distribution For Cost-Effective And Durable Fuel Cells And Electrolyzers	Sreeprasad Sreenivasan	\$300,000	\$300,000	\$0
University of California, Riverside	Single-Walled Carbon Nanotubes with Confined Chalcogens as the Catalysts and Electrodes for Oxygen Reduction Reaction in Fuel Cells	Juchen Guo	\$300,000	\$300,000	\$0

Projects will be part of the ElectroCat Consortium and have access to national lab expertise

Hydrogen Shot Incubator Prize

Incentivize development of
innovative off-roadmap
technologies with the potential
to produce clean hydrogen at
\$1/kg in one decade

Break down barriers for inventors and researchers and accelerate progress by complementing traditional FOA process

Provide access to the national labs through vouchers

Prize winners from the Propose! Phase are working on their innovative technologies and applications for the Prove! Phase are due August 1st

For more information on the winners visit: www.herox.com/HydrogenShotPrize

Goal: Develop best practices in materials characterization and benchmarking:
Critical to accelerate materials discovery, development, validation, and adoption

Best Practices in Materials Characterization

Kathy Ayers, Nel Hydrogen (LTE) Ellen B. Stechel, ASU (STCH) Olga Marina, PNNL (HTE)

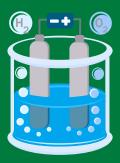
Sa Mailla, PININE (TIE)

CX Xiang, Caltech (PEC)

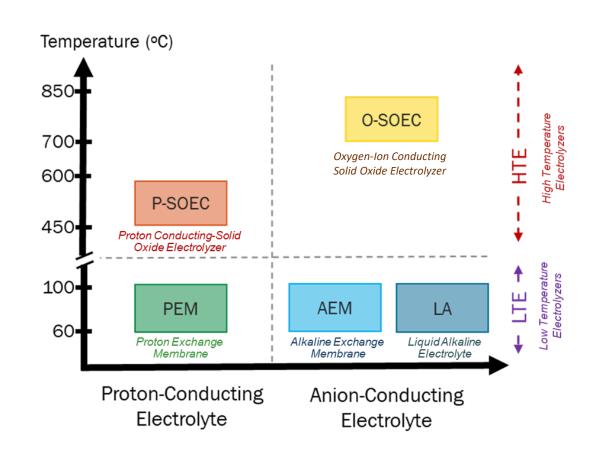
Consultant: Karl Gross, George Roberts

- Strong community engagement and participation, nationally and internationally
 - Participation from both HydroGEN and H2NEW consortia
- Disseminated information to AWS community via HydroGEN Data Hub, website, SharePoint site, email, quarterly newsletters, workshops

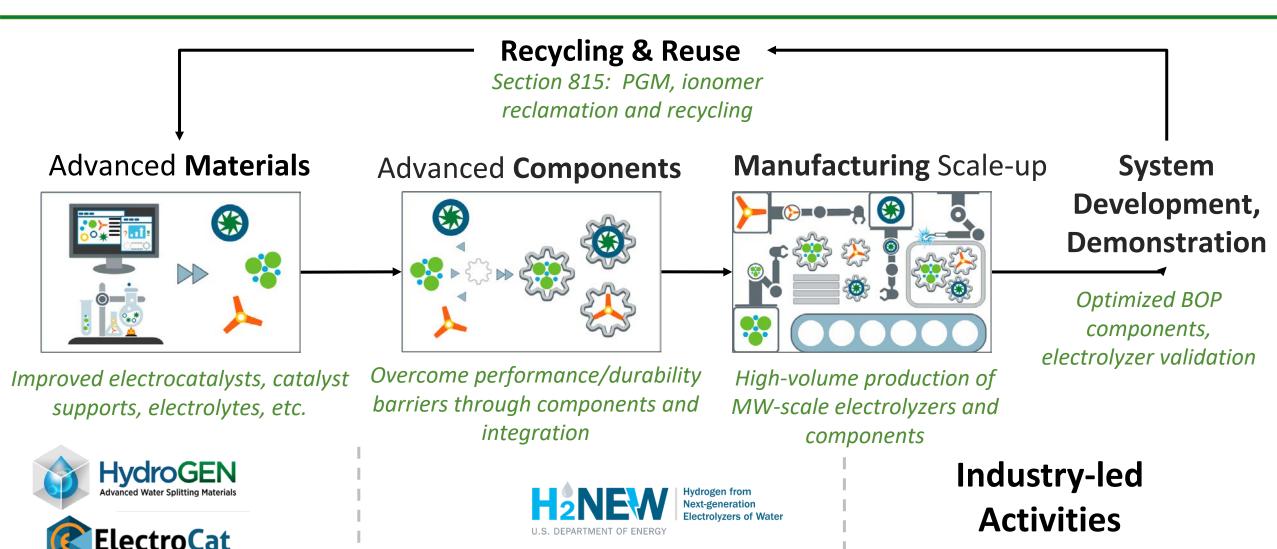
5th Annual HydroGEN Advanced Water Splitting Technology Pathways Benchmarking and Protocols Workshop


Date: Thursday September 21 - Friday September 22, 2023 **Location:** ASU Scottsdale Innovation Center Scottsdale, AZ USA

Accomplishments:


- 19 standardized measurement protocols and benchmarks published in open-access journal Frontiers in Energy Research special issue: free to download: https://www.frontiersin.org/research-topics/16823/advanced-water-splitting-technologies-development-best-practices-and-protocols#articles
 - 7 LTE, 4 HTE, 5 PEC, 3 STCH
 - 4,912 total downloads and 36,000 views
- 4 Annual AWS community-wide benchmarking workshop
- Developed high-level roadmaps by AWS technology

Hydrogen Production Electrolysis


Support of Diverse Electrolyzer Types

- Multiple electrolyzer types have potential to meet cost and technical targets
- Each technology has advantages and drawbacks with unique benefits and pathways to achieve H₂ production cost goals
- Electrolyzers are at different TRLs and supported accordingly
- To meet cost targets, need combination of close integration of electrolyzers with low-cost, clean electricity sources; high-volume manufacturing; and technology advancements

BIL 815/816 FOA is addressing this overall approach

A Multi-Staged Approach to Electrolyzer Technology Progression

Leverages established R&D Consortia & includes development across complete lifecycle of electrolyzers

Analysis Efforts Identify Cost Reduction Strategies and Pathways to Achieve Cost Targets

Hydrogen Production Cost Targets

Clean H ₂ Electrolysis Program	2026	\$2/kg H ₂
Hydrogen Shot	2031	\$1/kg H ₂

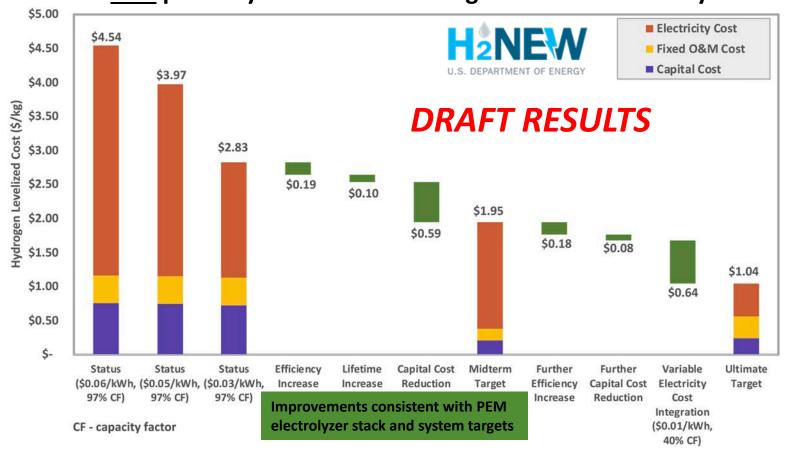
Key Cost Drivers for Clean Hydrogen Production

Manufacturing Throughput

- Automation
- •Increased line speed
- Quality assurance/ quality control

Electrolyzer Properties

- System lifetime
- System efficiency
- Material and equipment costs
- Electricity priceCapacity factor
 - $\bullet In stallation costs$

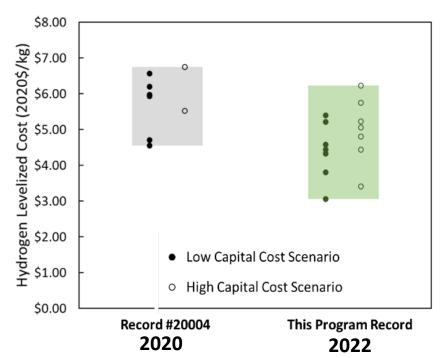

 Integration with clean energy

sources

Energy System

Integration

One pathway to achieve cost targets via PEM electrolysis



Achieving economies-of-scale will not alone meet cost targets - RD&D of next-generation, advanced technologies and integrated systems with low-cost, clean electricity are also needed

Tracking Progress in Clean H₂ Production Cost

- Continual tracking of key parameters (capital cost, lifetime, performance/efficiency, and O&M costs)
- Vetted by electrolyzer OEMs
- Current cost of H_2 from PEM electrolyzers is \sim \$4 6/kg* for a range of renewable energy scenarios
- Ongoing efforts to document cost of H₂ from other electrolyzer types (LA, AEM, O-SOEC, P-SOEC)

				e (d./)	
	Electricity Price		H₂ Cost ^e (\$/kg)		
Scenario	(¢/kWh)	Capacity Factord (%)	Electrolyzer Capital Cost ^f		
	(4) (4)		\$1,000/kW	\$1,300/kW	
	U.S. Gri	d Electricity			
Grid – Low Case	5.5	97%	4.44	4.81	
Grid – Average Case	Grid – Average Case 7.2 97%		5.39	5.75	
	Regional C	lean Electricity			
Utility-Scale PV, Class 1	2.6	30%	5.21	6.23	
Land-based Wind, Class 1	2.5	49%	3.80	4.44	
Hydropower	4.0	50%	4.58	5.22	
Nuclear Power fully amortized	3.0	97%	3.05	3.41	

DOE Hydrogen Program Record #23001, "Hydrogen Production Cost with Current PEM Electrolyzer Technology – 2022", To be published at https://www.hydrogen.energy.gov/program records.html

*as low as \$3/kg for some nuclear cases

Updated Electrolyzer Technical Targets

Technical targets for stack and system for PEM,LA, and HTE:

https://www.energy.gov/eere/fuelcells/hydrogen-production-related-links#targets

PEM Electrolyzer Stacks & Systems

CHARACTERISTIC	UNITS	2022 STATUS ^C	2026 TARGETS	ULTIMATE TARGETS
Stack				
Total Platinum Group Metal Content	mg/cm ²	3.0	0.5	0.125
(both electrodes combined) ^d	g/kW	0.8	0.1	0.03
Performance		2.0 A/cm2 @ 1.9 V/cell	3.0 A/cm2 @ 1.8 V/cell	3.0 A/cm2 @ 1.6 V/cell
Electrical Efficiency ^e	kWh/kg H ₂ (% LHV)	51 (65%)	48 (69%)	43 (77%)
Average Degradation Rate ^f	mV/kh (%/1,000 h)	4.8 (0.25)	2.3 (0.13)	2.0 (0.13)
Lifetime ^g	Operation h	40,000	80,000	80,000
Capital Cost ^h	\$/kW	450	100	50
System				
Energy Efficiency	kWh/kg H ₂ (% LHV)	55 (61%)	51 (65%)	46 (72%)
Uninstalled Capital Cost ^h	\$/kW	1,000	250	150
H ₂ Production Cost ⁱ	\$/kg H ₂	>3	2.00	1.00

High-T Electrolyzer Stacks & Systems

CHARACTERISTIC	UNITS	2022 STATUS ^C	2026 TARGETS	ULTIMATE TARGETS
Stack				
Performance	A/cm ² @ 1.28 V/cell	0.6	1.2	2.0
Electrical Efficiency ^d	kWh/kg H ₂ (% LHV)	34 (98%)	34 (98%)	34 (98%)
Average Degradation Rate ^e	mV/kH (%/1,000 h)	6.4 (0.50)	3.2 (0.25)	1.6 (0.12)
Lifetime ^f	Operation h	20,000	40,000	80,000
Capital Cost ^g	\$/kW	300	125	50
System				
Electrical Efficiency	kWh/kg H ₂ (% LHV)	38 (88%)	36 (93%)	35 (95%)
Energy Efficiency ^h	kWh/kg H ₂ (% LHV)	47 (71%)	44 (76%)	42 (79%)
Uninstalled Capital Cost ^g	\$/kW	2,500	500	200
H ₂ Production Cost ⁱ	\$/kg H ₂	>4	2.00	1.00

see published targets for additional details

Upcoming Activities

Electrolyzer Data Collection Effort

- Planned new initiative to collect cost, performance, and reliability data from deployed/ installed electrolyzers which will be securely stored, aggregated, and anonymized
- Data will help refine assumptions & track progress in \$/kg cost reductions to validate achieving \$2/kg H₂ by 2026
- Data contributors may also receive detailed analytics of their submitted confidential data

Electrolyzer Installation Costs Workshop

When: September 2023

Stay tuned to the HFTO newsletter for the official announcement later this summer!

Who: Anyone interested in the details of large-scale electrolyzer installations

Virtual and open to the public

Goals: Understand challenges, cost drivers, and lessons learned for large-scale electrolyzer installations and opportunities for DOE to reduce the cost/timeline

Expansion to Multi-MW Electrolyzer Stack and System Testing

Low-Temperature Electrolyzers – NREL (P207)

- Expansion of NREL's Flatirons Campus ARIES capability to support industry
- Full LTE system testing up to 10 MW
- Parallel stack testing up to 6 MW in aggregate for PEM and/or LA

Grid integration with renewable energy production

High-Temperature Electrolyzers – INL (SD1006)

- Development at INL's Energy Technology Proving Ground
- Full, multiple HTE system testing up to 10 MW in aggregate
- Simulated nuclear integration / future physical integration with advanced nuclear reactors

Coming online
in 2026!

10 MW_{AC}
and Water

Full Delivered System (10 MW)

Stack + Core BoP (6 MW)

Stack only
(6 MW PEM or 2 MW LA)

H₂ to storage and fuel cell

Please visit posters on Wed. for more details on capabilities to validate your technology

Coming online in 2024!

10 MW System Test Power

Low and High Compression H2 Tanks

H2 Multi-Stage Compression

H2 Processing

Multi-MWe Electrolyzers (10MW Total)

DI Water Supply and MWe Boiler

5 MW Balance of Plant Power

Milestones, Collaborations, Team

H₂ Production Program Highlights and Milestones Summary

FY2022	FY2023	FY2024
BIL signed into law	BIL Sections 815 & 816 FOA released	BIL 815 & 816 FOA projects selected, and work commences
Power Electronics and Liquid Alkaline Electrolyzer Experts Meetings	Updated H ₂ Production Cost Record Posted	Electrolyzer Installation Costs Workshop
Request for Information for BIL Sections 815 & 816	BIL Section 816 Lab Call released, and selections to be made	Commission/start operation of HTE validation center
HTE Manufacturing and PEM Materials Electrolyzer Workshops	5th Annual AWS benchmarking workshop	Electrolyzer real-world data collection underway
BIL Section 816 strategy developed	Announce FY22 direct solar water splitting FOA awards and complete negotiations	BIL Lab Call projects commence
H2 Shot Incubator Prize launched	Expand H2NEW, HydroGEN, and ElectroCat Consortia	H ₂ Shot Incubator Prize "Prove!" Phase winners announced
FY22 FOA topic on direct solar water splitting (PEC and STCH)	Electrolyzer stack and system technical targets released	LA Electrolysis Cost Record published
4th Annual AWS benchmarking workshop	Kick-off multi-MW electrolyzer validation/ test centers effort	All H2 Shot Technology Assessments Released

H₂ Production: Collaboration Network

Fostering technical excellence, economic growth and environmental justice

Efforts Support Over:

10 national laboratories

24 universities

15 companies

DOE H ₂ Program Collaborations						
Collaboration	n across H ₂ thro	ugh Joint St	rategy	Teams (JST)		
AMMTO	\	/TO		ВЕТО		
SETO	0	CED		ARPA-E		
SC	FI	ECM		NE		
DOE Cross-Cutting Initiatives						
Advanced Materials	A	/ML	M	Advanced anufacturing		
Decarbonization of Agriculture/Buildings/Electricity/Industry/Transportation						
Cross-Agency Collaborations						
DOC-NIST	NASA	EPA		NSF		

Industry Engagements

Workshops

Requests for Information

AWS Benchmarking and Protocol Development

H2NEW

HydroGEN

ElectroCat

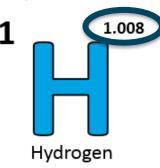
Regional and International Collaborations

IEA H₂ TCP

IEA AFC TCP

AWS Benchmarking and Protocol Dev.

Bilateral Collaborations


Resources and Opportunities for Engagement

Save the date!

2024 DOE Annual Merit Review and Peer Evaluation Meeting May 6-9, 2024

Hydrogen and Fuel Cells Day October 8

 Held on hydrogen's very own atomic weight-day

Join Monthly
H2IQ Hour Webinars

DownloadH2IQ For Free

Visit H2tools.Org For Hydrogen Safety And Lessons Learned

https://h2tools.org/

Sign up to receive hydrogen and fuel cell updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Learn more at: energy.gov/eere/fuelcells AND www.hydrogen.energy.gov

HFTO is Hiring!

We have **multiple federal and contractor positions**, including to support the Clean Hydrogen Electrolysis Program

Federal Position

- Please submit resumes to https://www.energy.gov/CleanEnergyCorps
- Email <u>HFTOhiring@ee.doe.gov</u> to let us know you have submitted your resume. Include "Clean Energy Corps Applicant" in the subject line of the email.
- See more: https://www.energy.gov/eere/fuelcells/hydrog en-and-fuel-cell-technologies-office-careers

Hydrogen Shot Fellowship

The U.S. Department of Energy (DOE) is looking for talented, bright, early career professionals to partner with DOE Hydrogen Program Managers working to achieve the Hydrogen Energy Earthshot goal of \$1 per 1 kilogram in 1 decade ("1 1 1").

Apply today at: www.zintellect.com

Keyword: Hydrogen Shot

The Hydrogen Production Team

Acting Program Manager

Technology Managers

McKenzie Hubert

James Vickers

Anne Marie Esposito

Open Position

Will Gibbons

Open Position

Support Contractors

Leah Mcgovern

Open Position

Open Position

Technical Project Officer

Kim Cierpik-Gold

Fellows

Rachel Mow

Open Position

Thank You

Dr. David Peterson

Acting Program Manager, Hydrogen Production, HFTO

David.Peterson@ee.doe.gov

hydrogenandfuelcells.energy.gov

Session Schedule – Hydrogen Production Oral Presentations

Tursday, June 6 Oral Presentations E.O. ANA Decomplyings Production Technologies, Subgragam Overview (David Presentations P191 Perconskite / Production Production (David Presentations) P192 Perconskite / Production Production (David Presentations) P193 Perconskite / Production Production (David Presentations) P193 Perconskite / Production Production (David Presentations) P194 HydroGEN Overview: A Consortium on Advanced Water Splitting Materials (Hydro Dish, NRE) P195 Perconskite / Production and Their Evolution in Advanced Water Splitting Materials (Hydro Dish, NRE) P195 Perconskite / Production and Their Evolution in Advanced Water Splitting Materials (Hydro Dish, NRE) P195 Perconskites with Corracion in Existent Barriers (Adalys D. Mohite, William Materials (Hydro Dish, NRE) P195 Perconskites with Corracion in Existent Barriers (Adalys D. Mohite, William Materials (Existent Season Based on Hydro Dish, NRE) P195 Pathaling (Low Cost PEM Extraylys is Soils Through Production (Extraylys Splitting Materials) P195 Pathaling (Low Cost PEM Extraylys is Soils Through Production (Extraylys Splitting Materials) P195 Pathaling (Low Cost PEM Extraylys is Soils Through Production (Extraylys Splitting Materials) P195 Pathaling (Low Cost PEM Extraylys is Soils Through Production (Extraylys Splitting Materials) P195 Pathaling (Low Cost PEM Extraylys is Soils Through Production (Extraylys is Splitting (Kniv) Human, University of South Cordinals) P195 Pathaling (Low Cost PEM Extraylys is Soils Through Production (Extraylys Splitting Materials) P195 Pathaling (Low Cost PEM Extraylys is Soils Through Production (Cost PEM Extraylys is Soils Through Production (Cost PEM Extraylys Splitting Materials) P195 Pathaling (Low Cost PEM Extraylys is Soils Through Production (Cost PEM Extraylys Splitting Through Pembarane (Low Cost PEM Extraylys Splitting Through Pemba						
9:00 AM P000 Hydrogen Production Technologies Subprogram Overview (David Peterson, HFTO) 9:30 AM P148 HydrodEN Overview: A Consortium on Advanced Water Splitting Materials (Huyen Dinh, NRL) 9:30 AM P149 HydrodEN Overview: A Consortium on Advanced Water Splitting Materials (Huyen Dinh, NRL) 9:30 AM P159 Advanced Manufacturing Processes for disposate Society Hydrogen Splitting (Huyen Dinh, NRL) 9:30 AM P159 Advanced Manufacturing Processes for disposate Society Hydrogen Splitting (Huyen Dinh, NRL) 10:30 AM P159 Advanced Manufacturing Processes for disposate Society Hydrogen Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to were controlled to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to were controlled to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Advanced Manufacturing Processes for disposate Society (Huyen Dinh, NRL) 10:30 AM P159 Enabling to were controlled to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to were controlled to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to were controlled to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to were controlled to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to were controlled to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to were controlled to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to were controlled to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to were controlled to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to were controlled to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to were controlled to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to were controlled to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to the Splitting (Huyen Dinh, NRL) 10:30 AM P159 Enabling to the Splitt			Tuesday, June 6 Oral Presentations	Wednesday, June 7th Oral Presentations	Thursday, June 8th Oral Presentations	
9:00 AM POO Nytriego (Padution Technologies Subprogram Overview (David Peterson, H7TO) 9:30 AM P148 HydroGEN Overview: A Consortium on Advanced Water Splitting Materials (Huyen Dinh, NRLL) 10:00 AM P148 HydroGEN Overview: A Consortium on Advanced Water Splitting Materials (Huyen Dinh, NRLL) 10:00 AM P159 Advanced Manufacturing Processes for Gigowath-Scale P139 Televity of	8:00	0 AM		Continental Breakfast		
P148 Hydrog8N Overview: A Consortium on Advanced Water Splitting Materials (Huyen Dinh, NRE) P148 Hydrog8N Overview: A Consortium on Advanced Water Splitting Materials (Huyen Dinh, NRE) P159 Highly Selective for Solar Hydrogen Production (Indiamon, Indiamon, India	9:00	0 AM		Unassisted Photoelectrochemical Water Splitting (Yanfa Yan, The	Nanofiber Co-Products with Hydrogen (Alan Weimer, University of	
Provisities with Correction Resistant Brainier (adity a) Endowing University of March Res University) 10:30 AM Peroxisties with Correction Resistant Brainier (adity a) Endowing March Res University) 10:30 AM Protes Eachange Membrane Water Electrolyzers (Andrew Steinback), 3M) Protes Eachange Membrane Andred Electrolyzer (Andrew Park), 1mc (Durwing Volume Electrolyzer) Protes Eachange Membrane Andred Assembly & Saak-Up (Adam Paxson, Plug Power) Protes Eachange Membrane Andred Assembly & Saak-Up (Band Distad, Saint-Gobain) Protes Eachange Membrane Andred Assembly & Saak-Up (Band Distad, Saint-Gobain) Protes Eachange Membrane Andred Assembly & Saak-Up (Band Distad, Saint-Gobain) Protes Eachange Membrane Andred Assembly & Saak-Up (Band Distad, Saint-Gobain) Protes Eachange Membrane Andred Assembly & Saak-Up (Band Distad, Saint-Gobain) Protes Eachange Membrane Andred Assembly & Saak-Up (Band Distad, Saint-Gobain) Protes Eachange Membrane Andred Assembly & Saak-Up (Band Distad, Saint-Gobain) Protes Eachange Membrane Andred Assembly & Saak-Up (Band Distad, Saint-Gobain) Protes Eachange Membrane Andred Assembly & Saak-Up (Band Distad, Saint-Gobain) Protes Eachange Membrane Andred Assembly & Saak-Up (Band Distad, Saint-Gobain) Protes Each Andred Membrane Andred Assembly & Saak-Up (Band Distad, Saint-Gobain) Protes Eachange Membrane Andred Assembly & Saak-Up (Band Distad, Saint-Gobain) Protes Each Andred Membrane Andred Assembly & Saak-Up (Band Distad, Saint-Gobain) Protes Each Andred Membrane Andred Membrane Andred Asse	9:30	0 AM	P148 HydroGEN Overview: A Consortium on Advanced	Highly Selective for Solar Hydrogen Production and Their Evaluation in Z-		
P197 Advanced Manufacturing Processes for Gigawatt-Scale Proton Exchange Membrane Water Electrolyzer (Andrew Steinbach, 3M) P198 Enabling Low Cost PEM Electrolyzer (Andrew Steinbach, 3M) P198 Enabling Low Cost PEM Electrolysis at Scale Through Optimization of Transport Components and Electrode Interfaces (Chric Expana, Nel Hydrogen) P199 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P199 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P199 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P199 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P199 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P199 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P199 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P199 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P199 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P199 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P199 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P199 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P199 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P199 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P190 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P190 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P190 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P190 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P190 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P190 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P190 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P190 Integrated Membrane Anode Assembly & Scale-Up (Adam Paxson, Plug Power) P190 Integrated M	10:00	00 AM	Water Splitting Materials (Huyen Dinh, NREL)	Perovskites with Corrosion Resistant Barriers (Aditya D. Mohite, William	Hydrogen Generation from Lignocellulosic Biomass and Waste (Hong Liu,	
11:00 AM Proton Exchange Membrane Water Electrolyzers (Andrew Steinbach, 3M) Proton Exchange Membrane Water Electrolyzers (Andrew Park) Proton Exchange Membrane Water Electrolyzers (Andrew Park) Proton Exchange Membrane Water Electrolyzer Stack Steinbach, 3M) Proton Exchange Membrane Stack Effective Advanced Water Splitting Utilizing All Ceramic Solid Oxide Electrolyzer Stack Steinbach, 3M) Proton Exchange Membrane Analysis (Brian James, Strategic Analysis, Inc.) Proton Exchange Membrane Stack Steinbach, 3M) Proton Exchange Membrane Analysis (Brian James, Strategic Analysis, Inc.) Proton Exchange Membrane Stack Strategic Analysis, Inc.) Proton Exchange Analysis (Brian James, Strategic Analysis, Inc.) Proton Exchange Analysis (Brian James, Strategic Analysis, Inc.) Proton Exchange Analysis, Inc. Production Cost and Performance Analysis (Brian James, Strategic Analysis, Inc.) Proton Exchange Analysis (Brian James, Strategic Analysis, Inc.) Proton Exchange Analy	10:30	BO AM		Break		
11:30 AM Optimization of Transport Components and Electrode Interfaces (Chris Capuano, Nel Hydrogen) 12:00 PM P199 Integrated Membrane Anolde Assembly & Scale-Up (Adam Paxson, Plug Power) 12:30 PM Lunch 1:45 PM 2:15 PM P196 H2NEW Consortium: Hydrogen from Next-Generation of Electrolyzers of Water (Bryan Pivovar, NREL & Richard Boardman, INL) 2:45 PM P200 Low-Cost Manufacturing of High Temperature Electrolyzis Stacks (Scott Swartz, Nexteer) Assembly & Scale-Up (Long Production (Long Production) Assembly & Scale-Up (Long Production) Assembly & Scale & Scott Swartz, Nextech Materials, Ltd.) P201 Low-Cost Manufacturing of High Temperature Electrolysis Stacks (Scott Swartz, Nextech Materials, Ltd.) P202 Low-Cost Manufacturing of High Temperature and Isothermal Thermochemical Hydrogen Production (Long Production) (Long Production) (Long Walnia, Scale Bull Hydrogen Production) (Long Walnia, Scale Bull Hydrogen Generation) (Lian Luo, University of California, San Diego) P194 New High-Entropy Perovskite Oxides with Increased Reducibility and Stability for Thermochemical Hydrogen Generation (Lian Luo, University of California, San Diego)	11:00		Proton Exchange Membrane Water Electrolyzers (Andrew	for Durable Intermediate-Temperature Electrochemical Water Splitting	into Low-Cost Renewable Hydrogen (Noah Meeks, Southern Company	
12:30 PM 12:30 PM 12:30 PM 12:30 PM 12:30 PM 12:35 PM 12:35 PM 12:35 PM 12:35 PM 12:35 PM 13:45 PM 13:45 PM 13:45 PM 13:45 PM 14:35 PM 15:45 PM 16:46 Performance Analysis (Brian James, Strategic Analysis, Inc.) 16:46 Performance Analysis (Brian James, Strategic Analysis, Inc.) 17:46 Performance Analysis (Brian James, Strategic Analysis, Inc.) 17:46 Performance Analysis (Brian James, Strategic Analysis, Inc.) 18:46 Performance Analysis (Brian James, Strategic Analysis, Inc.) 18:46 Performance Analysis (Brian James, Strategic Analysis, Inc.) 19:46 Performance Analysis (Brian James, Strategic Analysis, Inc.) 19:48 Performance and Durability Investigation of Thin, Low Crossover Proton Exchange Materials Discovery and Performance Analysis (Brian James, Strategic Analysis, Inc.) 19:48 Performance Analysis (Brian James) 19:48 Performance Analysis Performance Analysis (Brian James) 19:48 Performance Analysis Performance Analysis Performance Analysis Performance Analysis (Brian James) 19:48 Pe	11:30		Optimization of Transport Components and Electrode	Water Splitting Utilizing All Ceramic Solid Oxide Electrolyzer Stack	Generation from Wastewaters (Bruce Logan, Pennsylvania State	
1:45 PM 2:15 PM P196 H2NEW Consortium: Hydrogen from Next-Generation of Electrolyzers of Water (Bryan Pivovar, NREL & Richard Boardman, INL) P186 Performance and Durability Investigation of Thin, Low Crossover Proton Exchange Membranes for Water Electrolyzers (Andrew Park, The Chemours Company FC, LLC) P185 High-Performance AEM LTE with Advanced Membranes, Ionomers and PGM-Free Electroles (Paul Kohl, Georgia Institute of Technology) Break P200 Low-Cost Manufacturing of High Temperature Electrolyzer (Andrew Park, The Chemours Company FC, LLC) P195 A New Paradigm for Materials Discovery and Development for Lower Temperature and Isothermal Thermochemical Hydrogen Production (Jonathan Scheffe, University of Florida) P201 Automation of Solid Oxyde Electrolyzer Cell (SOEC) & Stack Assembly (Todd Striker, Cummins Inc.) P195 A New Paradigm for Materials Discovery and Development for Lower Temperature and Isothermal Thermochemical Hydrogen Production (Jonathan Scheffe, University of Florida) P201 Automation of Solid Oxyde Electrolyzer Cell (SOEC) & Stack Assembly (Todd Striker, Cummins Inc.) P196 H2NEW Consortium: Hydrogen Production Cost and Performance Analysis (Brian James, Strategic Analysis, Inc.) P186 Performance and Durability Investigation of Thin, Low Crossover Proton Exchange Membranes for Water Electrolyzers (Andrew Park, The Chemous Cremous Company FC, LLC) P185 High-Performance Analysis, Inc.) P195 A New Paradigm of Materials Discovery and Development for Lower Temperature and Isothermal Thermochemical Hydrogen Production (Jonathan Scheffe, University of Florida) P201 Automation of Solid Oxyde Electrolyzer Cell (SOEC) & Stack Assembly (Todd Striker, Cummins Inc.) P194 New High-Entropy Perovskite Oxides with Increased Reducibility and Stability for Thermochemical Hydrogen Generation (Jian Luo, University of California, San Diego) P170 Benchmarking Advanced Water Splitting Technologies: Best Practices in Materials Characterization (Olga Marina, PNNL)	12:00	00 PM				
Strategic Analysis, Inc.) P196 H2NEW Consortium: Hydrogen from Next-Generation of Electrolyzers of Water (Bryan Pivovar, NREL & Richard Boardman, INL) 2:45 PM 3:15 PM P201 Low-Cost Manufacturing of High Temperature Electrolysis Stacks (Scott Swartz, Nextech Materials, Ltd.) P195 A New Paradigm for Materials Discovery and Development for Lower Temperature and Isothermal Thermochemical Hydrogen Production (Jonathan Scheffe, University of Florida) P201 Automation of Solid Oxyde Electrolyzer Cell (SOEC) & Stack Assembly (Todd Striker, Cummins Inc.) Strategic Analysis, Inc.) P186 Performance and Durability Investigation of Thin, Low Crossover Proton Exchange Membranes, Ionomers and PGM-Free Electrolyzer (Paul Kohl, Georgia Institute of Technology) Break P200 Low-Cost Manufacturing of High Temperature Electrolysis Stacks (Scott Swartz, Nextech Materials, Ltd.) P195 A New Paradigm for Materials Discovery and Development for Lower Temperature and Isothermal Thermochemical Hydrogen Production (Jonathan Scheffe, University of Florida) P194 New High-Entropy Perovskite Oxides with Increased Reducibility and Stability for Thermochemical Hydrogen Generation (Jian Luo, University of California, San Diego) P170 Benchmarking Advanced Water Splitting Technologies: Best Practices in Materials Characterization (Olga Marina, PNNL)	12:30	30 PM		Lunch		
2:15 PM of Electrolyzers of Water (Bryan Pivovar, NREL & Richard Boardman, INL) 2:45 PM 3:15 PM Proton Exchange Membranes for Water Electrolyzers (Andrew Park, The Chemours Company FC, LLC) P185 High-Performance AEM LTE with Advanced Membranes, Ionomers and PGM-Free Electrodes (Paul Kohl, Georgia Institute of Technology) Break P200 Low-Cost Manufacturing of High Temperature Electrolysis Stacks (Scott Swartz, Nextech Materials, Ltd.) P195 A New Paradigm for Materials Discovery and Development for Lower Temperature and Isothermal Thermochemical Hydrogen Production (Jonathan Scheffe, University of Florida) P201 Automation of Solid Oxyde Electrolyzer Cell (SOEC) & Stack Assembly (Todd Striker, Cummins Inc.) P194 New High-Entropy Perovskite Oxides with Increased Reducibility and Stability for Thermochemical Hydrogen Generation (Jian Luo, University of California, San Diego) P170 Benchmarking Advanced Water Splitting Technologies: Best Practices in Materials Characterization (Olga Marina, PNNL)	1:45	5 PM				
2:45 PM 3:15 PM P200 Low-Cost Manufacturing of High Temperature Electrolysis Stacks (Scott Swartz, Nextech Materials, Ltd.) P201 Automation of Solid Oxyde Electrolyzer Cell (SOEC) & Stack Assembly (Todd Striker, Cummins Inc.) P195 A New Paradigm for Materials Discovery and Development for Lower Temperature and Isothermal Thermochemical Hydrogen Production (Jonathan Scheffe, University of Florida) P194 New High-Entropy Perovskite Oxides with Increased Reducibility and Stability for Thermochemical Hydrogen Generation (Jian Luo, University of California, San Diego) P170 Benchmarking Advanced Water Splitting Technologies: Best Practices in Materials Characterization (Olga Marina, PNNL)	2:15		of Electrolyzers of Water (Bryan Pivovar, NREL & Richard	Proton Exchange Membranes for Water Electrolyzers (Andrew Park, The		
P200 Low-Cost Manufacturing of High Temperature Electrolysis Stacks (Scott Swartz, Nextech Materials, Ltd.) P201 Automation of Solid Oxyde Electrolyzer Cell (SOEC) & Stack Assembly (Todd Striker, Cummins Inc.) P195 A New Paradigm for Materials Discovery and Development for Lower Temperature and Isothermal Thermochemical Hydrogen Production (Jonathan Scheffe, University of Florida) P194 New High-Entropy Perovskite Oxides with Increased Reducibility and Stability for Thermochemical Hydrogen Generation (Jian Luo, University of California, San Diego) P170 Benchmarking Advanced Water Splitting Technologies: Best Practices in Materials Characterization (Olga Marina, PNNL)	2:45	5 PM		•		
3:45 PM P200 Low-Cost Manufacturing of High Temperature Electrolysis Stacks (Scott Swartz, Nextech Materials, Ltd.) Lower Temperature and Isothermal Thermochemical Hydrogen Production (Jonathan Scheffe, University of Florida) P201 Automation of Solid Oxyde Electrolyzer Cell (SOEC) & Stack Assembly (Todd Striker, Cummins Inc.) P194 New High-Entropy Perovskite Oxides with Increased Reducibility and Stability for Thermochemical Hydrogen Generation (Jian Luo, University of California, San Diego) P170 Benchmarking Advanced Water Splitting Technologies: Best Practices in Materials Characterization (Olga Marina, PNNL)	3:15	5 PM	Break			
4:15 PM P201 Automation of Solid Oxyde Electrolyzer Cell (SOEC) & and Stability for Thermochemical Hydrogen Generation (Jian Luo, University of California, San Diego) 4:45 PM 4:45 PM WENT OF THE POOR TO SOLID OXYDE Electrolyzer Cell (SOEC) & and Stability for Thermochemical Hydrogen Generation (Jian Luo, University of California, San Diego) P170 Benchmarking Advanced Water Splitting Technologies: Best Practices in Materials Characterization (Olga Marina, PNNL)	3:45	5 PM		Lower Temperature and Isothermal Thermochemical Hydrogen		
4:45 PM Practices in Materials Characterization (Olga Marina, PNNL)	4:15	.5 PM		and Stability for Thermochemical Hydrogen Generation (Jian Luo,		
				Practices in Materials Characterization (Olga Marina, PNNL)		

Session Schedule – Hydrogen Production Poster Presentations

	Tuesday, June 6 Poster Presentations, 5:30–7:00 p.m.					
	Hydrogen Production Technologies					
P148A	HydroGEN: Low Temperature Electrolysis	Shaun Alia, NREL				
P148B	HydroGEN: High Temperature Electrolysis	Dong Ding, INL				
P148C	HydroGEN: Photoelectrochemical (PEC) Water Splitting	Joel Ager, LBNL				
P148D	HydroGEN: Solar Thermochemical Hydrogen (STCH) Water Splitting	Anthony McDaniel, SNL				
P148E	HydroGEN: Cross-Cut Modeling	Tadashi Ogitsu, LLNL				
P154	Thin-Film, Metal-Supported High-Performance and Durable Proton- Solid Oxide Electrolyzer Cell	Tianli Zhu, Raytheon Technologies Research Center				
P175	Intermediate Temperature Proton-Conducting Solid Oxide Electrolysis Cells with Improved Performance and Durability	Xingbo Liu, West Virginia University				
P187	Pure Hydrogen Production through Precious-Metal-Free Membrane Electrolysis of Dirty Water	Shannon Boettcher, University of Oregon				
P196a	H2NEW LTE: Durability and AST Development	Rangachary Mukundan, LBNL				
P196b	H2NEW LTE: Benchmarking and Performance	Deborah Myers, ANL				
P196c	H2NEW LTE: Manufacturing, Scale-Up, and Integration	Scott Mauger, NREL				
P196d	H2NEW LTE: System and Techno-Economic Analysis Hydrogen from Next-Generation Electrolyzers	Alex Badgett, NREL				
P196e	H2NEW HTE: Durability and AST Development	Olga Marina, PNNL				
P196f	H2NEW HTE: Cell Characterization	David Ginley, NREL				
P196g	H2NEW HTE: Multiscale Degradation Modeling	Brandon Wood, LLNL				
P196h	H2NEW LTE: Liquid Alkaline Water Electrolysis	Meital Shviro, NREL				
P205*	Metal-Organic Framework-Based Heterostructure Electrocatalysts with Tailored Electron Density Distribution for Cost-Effective and	Sreeprasad Sreenivasan, University of Texas, El Paso				
P206	Single-Walled Carbon Nanotubes with Confined Chalcogens as the Catalysts and Electrodes for Oxygen Reduction Reaction in Fuel Cells	Juchen Guo, University of California, Riverside				

Tonight from 5:30-7:00pm

Session Logistics

General Information

- This meeting is a review, not a conference
 - Questions will be taken first from reviewers, and then from other audience members as time allows
 - Remote reviewers are reminded to enter their questions in CHAT
 - Remote general attendees can enter questions or comments into Q&A
- The schedule will be strictly followed so that reviewers can move between sessions
- Presentations are 20 minutes followed by 10 minutes Q&A

Thank You, Reviewers!

Your input on our Program and subprograms helps guide our decisions.

Thank you for your thoughtful, objective, and timely feedback!