

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Systems Development & Integration Overview

Jesse Adams, HFTO – Systems Development & Integration Program Manager

2023 Annual Merit Review & Peer Evaluation Meeting

June 6, 2023 – Arlington, VA

The Hydrogen and Fuel Cell Technologies Office (HFTO)

Mission Support research, developme and demonstration (RD&D) of hydrogen and fuel cell technologies to advance:	 • Clean Energy and Emissions Reduction Across Sectors • Job Creation and a Sustainable and Equitable Energy Future
---	---

Hydrogen Technologies	Fuel Cell Technologies	Systems Development & Integration	U.S. DEPARTMENT OF ENERGY Hydrogen
Hydrogen Production Hydrogen Infrastructure	Materials & Components Systems	Transportation Industrial and Chemical Applications Grid Energy Storage and Power Generation	Enabling
			000000

Data, Modeling, Analysis, Safety, Codes and Standards

Systems Development & Integration Overview

Bridging the Gap Between R&D and Deployments with First-of-a-Kind Integrated H₂ Demonstrations

Systems Development & Integration (SDI): Priorities

Current Focus Areas

 Grid Energy Storage & Power Generation including hybrid approaches

 Chemical and Industrial Processes integrating H₂ technologies focusing on decarbonization

 Transportation & H₂ fueling demonstrations **Demonstrate** H₂ & fuel cell integration to accelerate market adoption & reduce GHG emissions **to enable H2@Scale vision**

Systems Development & Integration: Budget

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

U.S. DEPARTMENT OF ENERGY

Regional Clean Hydrogen Hubs – In Collaboration with OCED

- Led by DOE's Office of Clean Energy Demonstrations (OCED) in collaboration with HFTO & the DOE H₂ Program
- \$6-7B available under current FOA to develop 6-10 regional clean H2Hubs across the country to create networks of H₂ producers, consumers, & local connective infrastructure to accelerate use of clean H₂
 - Feedstock diversity
 - End use diversity
 - Geographic diversity
 - Employment and training
- Current Status
 - FOA released in September 2022
 - Applicant Webinar held in January 2023
 - Full Applications submitted April 7, 2023
 - Merit Review in process
 - H2Hub Selections in Fall 2023

SDI: Grid Energy Storage & Power Generation

New Nuclear-H2 Integration Projects – In Collaboration with NE

GE Research – Scaled Solid Oxide Co-Electrolysis for Low-Cost Syngas Synthesis from Nuclear Energy

Goals:

- Complete engineering design/testing for production of synthetic jet fuel using nuclear energy from existing light water reactors & Solid Oxide Co-Electrolysis
- Complete TEA
- Manufacture of scaled solid oxide cells
- Integration & testing of 50kW stack at INL

Potential Impact: Nuclear to H_2 + CO to Synthetic Aviation Fuel

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Westinghouse – FEEDs for Integrating Commercial **Electrolysis H₂ Production with Selected LWRs**

Goals:

Complete Front-End Engineering Designs (FEEDs) development for nuclear-coupled SOEC H₂ production at specific U.S. LWR plants

- Designs will be developed for both pressurized water reactor (PWR) & boiling water reactor (BWR)
- · Licensing impact assessments will be completed
- TEA & LCA for markets under consideration

Potential Impact: Higher system efficiencies / lower cost through thermal integration of SOEC with nuclear plant

Expansion to Multi-MW Electrolyzer Stack and System Test Capabilities

Low-Temperature Electrolyzers – NREL (P207)	High-Temperature Electrolyzers – INL (SD1006)	
 Expansion of NREL's Flatirons Campus ARIES capability to support industry 	 Development at INL's Energy Technology Proving Ground 	
 Full LTE system testing up to 10 MW Parallel stack testing up to 6 MW in aggregate for PEM and/or LA Grid integration with renewable energy production 	 Full, simultaneous HTE systems testing up to 10 MW in aggregate Simulated nuclear integration / future physical integration with advanced nuclear reactors 	
and other ARIES assets Coming online in 2026! 10 MW _{AC} and Water Full Delivered System (10 MW) Stack + Core BoP (6 MW) U Stack + Core BoP (6 MW) Stack only MW _{DC} Stack only	Posters for details to these facilities Coming online in 2024 ! I 0 MW System Test Power Low and High Compression H2 Tanks H2 Multi-Stage Compression H2 Processing Multi-MWe Electrolyzers (10MW Total) DI Water Supply and MWe Boiler 5 MW Balance of Plant Power	

Preliminary Set of Ultra Heavy-Duty Targets (Ferries, Rail, Mining, etc.)

Characteristic	Units	Interim Target	Ultimate Target
Fuel Cell System Lifetime	Hours	25,000	30,000
Fuel Cell System Cost	\$/kW	80	60
BOL FCS Efficiency at Rated Power	%	55	55
EOL FCS Efficiency at Rated Power	%	50	50
Hydrogen Storage System Cost	\$/kWh	9	8
H ₂ Storage System Life	Cycles	5,000	5,000
LH ₂ Bunkered Cost	\$/kg	7	4

- High-level <u>Targets are converging</u>, so <u>common set of</u> <u>"Ultra" HD Targets in development</u>
- FC Multiple Unit Rail & Passenger Ferries are <u>cost</u> <u>competitive with diesel @ \$4/kg H₂* (Ultimate Target)</u>
- Mine Haul Trucks TCO in progress

*Cost of H₂ produced, delivered & dispensed

SDI: Outreach

Transportation

- SAE COMVEC Conference September 2022
- Clean Buses in the U.S. Conference November 2022
- SAE Government/Industry Meeting January 2023
- Mission Innovation: Clean Hydrogen Mission
 Workshop, Hydrogen for Cargo Handling at Ports January 2023 (with METI of Japan)

Industrial & Chemical Processes

- Industrial Process Emissions Reduction (IPER)
 Workshop March 2023
- Global Clean Energy Action Forum (Steel & Industrial Round Tables) – September 2022

Grid Energy Storage & Power Generation

- Energy Exchange Clean Energy Campuses October 2022
- BOEM Gulf of Mexico Roundtable Meeting December 2022
- Floating Offshore Wind Shot Summit February 2023
- International Partnering Forum for Offshore Wind
 March 2023

Crosscutting

- Mission Innovation: Global Clean Energy Action Forum - 13th Clean Energy & 7th Mission Innovation Ministerials – September 2022
- Mission Innovation: Clean Hydrogen Mission Workshop, Hydrogen Detection Technologies for Safety – March 2023 (with METI of Japan)

SDI: International Collaboration

MISSION JOVATION CLEAN HYDROGEN ZERO-EMISSION MISSION SHIPPING MISSION Clean H₂ collaboration with Maritime collaboration with European Union, UK, Australia, & Chile on H_2 production, Denmark, Norway & the UK on storage, distribution & end ships, fuel production & port infrastructure uses Established Off-Road Working Group Held workshop with Norway, Denmark & other MI member Conducted capital equipment & countries on life cycle costs for fuel TCO analysis e-Ammonia fuel Held workshop with Japan & other MI member countries on Initiated study on bunkering esafety detection processes & Ammonia fuel at ports sensor equipment

International Working Group for Offshore Wind (OSW) to H2

- Partnership formed in 2021 between U.S. & Netherlands o (DOE, NREL, TNO & Hygro)
- FY23 collaboration includes OSW to $\rm H_2$ TEA & assessment of knowledge gaps for multiple OSW to $\rm H_2$ pathways
- Capital cost assessment for US & Netherlands completed
- Results show a lot of similarities in US-NL assessments, differences stem from supply chain and R&D cost reduction expectations

SDI: Collaboration Network

Fostering technical excellence, economic growth and environmental justice

Industry		DOE H ₂	Program Colla	borations		Cross-Agen	cy
Engagement		Collaboration ac	ross H ₂ through Joint	Strategy Team (JST)	Collaboratio	ns
21 st Century Truck Partnership / U.S. DRIVE		DOE IEDO	DOE VTO	DOE WET	0	DOT (NHTSA, FRA, F MARAD, PHMSA	HWA, 4)
Center for Hydrogen Safety	,	DOE OCED	DOE NE	DOE FECN	Л	DOD (Army, Navy, L Air Force)	ISMC,
FCHEA Participated in Numerous		DOE Cross-Cutting Initiatives Industrial Decarbonization, Long Duration Storage,				DHS (Boarder Patrol, Guard)	, Coast
Conferences, Workshops & Working Groups						IAA (Army-GVSC, Nav	/y-NRL)
	Floating Offshore Wind, Clean Fuels & Products, Industrial Heat, Grid Modernization			IWG (~15 governn agencies)	nent		
	U .	S. Regional d	and Internation	al Collaborat	ions		
Project Coordination across ~20 U.S. StatesMission Innovation Emission ShippingMission Inssion Innovation Clean H2International Offshore Wind to H2 Working GroupIE IE IE H2		IEA Wind and H2 Tasks: Renewable Hybrid System Collaboration	Center for Hydrogen Safety	National Research Council- Canada			
					197		

SDI: Highlights and Milestones

FY2022	FY2023	FY2024	
Regional Clean H2 Hubs: Perform Stakeholder Engagement & Issue FOA (in collaboration w/ OCED)	Regional Clean H2Hubs: Concept Paper reviews complete; Full Applications received 4/7/23 & reviews in process (in collaboration w/ OCED)	Regional Clean H2Hubs: Select & Negotiate 6-10 H2Hubs (in collaboration w/ OCED)	
Utilize ARIES Capabilities to Advance Integration of H_2 Technologies in Energy Systems (NREL)	Demonstrated Integrated (behind-the-meter) 1.25 MW	Develop 10MW Low & High Temperature Electrolysis Validation Facilities (NREL & INL)	
Completed Design & Procurement for 1.25 MW Electrolyzer Installation at Nuclear Plant	Complete Integration & Commissioning of 1.25MW	Test 250kW HT Electrolysis System using Fully Emulated Nuclear Integrated Test Stand (INL/FCE)	
(Constellation) Tested 100kW Integrated HT Electrolysis System	Electrolyzer and 1MW Fuel Cell Systems (NREL – ARIES) Initiated Design of Full Thermal Integration at a Nuclear	Develop H ₂ focused Micro-Grid in Disadvantaged Community (NREL, SDG&E)	
(INL/Bloom)	Plant with HT Electrolyzer in Collaboration with NE (Westinghouse)	Demonstrate Wind Turbine to Electrolyzer Direction	
Selected (3) SuperTruck III Projects Focused on M/HD H_2 Fuel Cell Trucks (Daimler, GM, Ford)	Demonstrate 15 Fuel Cell Electric MD Delivery Trucks Operating in Disadvantaged Community (CTE)	Analyze & Demonstrate 10 tonne H ₂ Bulk Sub-surface	
Demonstrate 10 kg/min Average H ₂ Fueling Rate for	Completed design, fabrication & testing of Class 7 H2Rescue Disaster Relief Truck (DOD, DHS, Cummins)	Storage (NREL - ARIES)	
HD applications (NREL) Held Workshop & Established International Off-Road	Kick-off of I-10 H ₂ Fueling Corridor Study in Collaboration with EERE-VTO (GTI)	Demonstrate 1.5 MW H ₂ Fuel Cell for Data Center Resiliency (Caterpillar, Microsoft)	
Working Group (in collaboration w/ International Mission Innovation – Clean Hydrogen)	Develop Reference Design & TEA for Direct Coupled Wind to H2 to Industrial End-Use (NREL)	Prototype Commissioning of multiple Class 4-8 Fuel Cell Electric Trucks through SuperTruck 3	
Performed SCS Gap Assessments for Large Scale H ₂ Applications, including Bulk Storage & Rail	Demonstrate 1 tonne/wk Reduction of Iron with H ₂ , enabling 90%+ emissions reduction (MS&T)	Interagency Project Demonstrating Fuel Cells for BEV Fast Charging (GM. DOD. DHS)	
Utilized Bulk Cryogenic H ₂ Behavior Validation Data to Enable 40% Reduction in H ₂ Station Footprint based on NFPA 2 (SNL)	Select New H ₂ Related Industrial Decarb Projects in Collaboration with EERE-IEDO	Rebranding and launch of Interagency Working Group (IWG)	

Save the date!

2024 DOE Annual Merit Review and Peer Evaluation Meeting May 6-9, 2024

Hydrogen and Fuel Cells Day October 8

Join Monthly H2IQ Hour Webinars

Download H2IQ For Free

Visit H2tools.Org For Hydrogen Safety And Lessons Learned

https://h2tools.org/

Hydrogen

Sign up to receive hydrogen and fuel cell updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Learn more at: energy.gov/eere/fuelcells AND www.hydrogen.energy.gov

U.S. DEPARTMENT OF ENERGY

Systems Development & Integration Team

We are looking for new feds! If interested, please **Jesse Adams** send an email to **Systems Development and Integration** Jesse Adams **Program Manager** (jesse.adams@ee.doe.gov) Jesse.Adams@ee.doe.gov Michael Hahn Pete Devlin **Benjamin Gould Tomas Green Open Position Open Position** Benjamin.Gould@ee.doe.gov Tomas.Green@ee.doe.gov Michael.Hahn@ee.doe.gov Peter.Devlin@ee.doe.gov Federal Federal **Technology Manager Technology Manager Technology Manager Technology Manager Grid Integration & Power Generation Chemical & Industrial** Transportation Transportation **Kyle Hlavacek** Gary Robb **Open Position Open Position**

Kyle.Hlavacek@ee.doe.gov

Program Analyst - Contractor

Open Position Contractor

Rebecca Erwin

Rebecca.Erwin@ee.doe.gov

ORISE Fellow

Brian Hunter

Brian.Hunter@ee.doe.gov

Technology Manager

H2Hubs

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Fellow - SDI

Fellow - SDI

Gary.Robb@ee.doe.gov

Technical Advisor - Contractor

We are looking for new fellows! If interested, please send an email to **Tomas Green** (tomas.green@ee.doe.gov)

The U.S. Department of Energy (DOE) is looking for talented, bright, early career professionals to partner with DOE Hydrogen Program Managers working to achieve the Hydrogen Energy Earthshot goal of \$1 per 1 kilogram in 1 decade ("111").

Are you graduating soon or just starting your career in hydrogen?

Do you want to help make clean hydrogen affordable for all?

The Hydrogen Shot Fellowship might be the opportunity you're looking for!

Apply today at: www.zintellect.com Keyword: Hydrogen Shot

Systems Development & Integration: Tuesday Session Outline

	Tuesday, June 6				
SDI000	Systems Development & Integration: Subprogram Overview	HFTO	Jesse Adams		
TA042	Next Generation Hydrogen Station Analysis	NREL	Genevieve Saur		
TA017	Innovative Advanced Hydrogen Mobile Fueler	Electricore	Sara Odom		
	Break (10:30 AM - 11:00 A	M)			
TA045	Waterfront Maritime Hydrogen Demonstration Project	Hornblower	Narendra Pal		
TA059	MDV TCO and Target Development	ANL	Ram Vijayagopal		
TA016	Fuel Cell Hybrid Electric Delivery Van	CTE	Jason Hanlin		
	Lunch (12:30 PM - 1:45 PM	VI)			
TA058	Freight Emissions Reduction via Medium Duty Battery Electric and Hydrogen Fuel Cell Trucks with Green Hydrogen Production via a New Electrolyzer Design and Electrical Utility Grid Coupling	GM	Jacob Lozier		
TA057	High Efficiency Fuel Cell Application for Medium Duty Truck Vocations	Ford	Stan Bower		
TA056	Ultra-Efficient Long-Haul Hydrogen Fuel Cell Tractor	Daimler	Derek Rotz		
Break (3:15 PM - 3:45 PM)					
SDI004	Hydrogen Coach Bus Fueling Demonstration	INL	Richard Boardman		
TA065	Total Cost of Ownership (TCO) Analysis of Hydrogen Fuel Cells in Off Road Heavy-Duty Applications – Preliminary Results	ANL	Rajesh Ahluwali		

- 5 parallel sessions
- SDI session runs all 3 days

•	<u>Tuesday</u>	: Trans	portation
---	----------------	---------	-----------

- Fueling Related Projects
- MD/Non-Road Analysis & Demos
- SuperTruck 3

Systems Development & Integration: Wednesday Session Outline

Wednesday, June 7				
TA001	MEA Manufacturing R&D	NREL	Peter Rupnowski	
TA043	SOEC Stack Development and Manufacturing R&D	PNNL	Olga Marina	
TA018	High Temperature Electrolysis, Stack and Systems Testing	INL	Micah Casteel	
	Break (10:30 AM - 11:00 AM)			
TA039	Solid Oxide Electrolysis System Demonstration	FCE	Hossein Ghezel-Ayagh	
NE001	Nuclear Project	Energy Harbor	Mark Wymer	
NE002	Nuclear Project	Xcel	David Malek	
	Lunch (12:30 PM - 1:45 PM)			
TA020	Demonstration of Electrolyzer Operation at a Nuclear Plant to Allow for Dynamic	Constallation	llugi Otgophaatar	
TAUZO	Participation in an Organized Electricity Market and In-House Hydrogen Supply	Constellation	Ougi Olgonbalai	
TA048	ARIES / Flatirons Facility - Hydrogen System Capability Buildout	NREL	Jeffrey Mohr	
TA037	Demonstration and Framework for H2@Scale in Texas and Beyond	Frontier	Rich Myhre	
	Break (3:15 PM - 3:45 PM)			
501001	Integrated Modeling, TEA, and Reference Design for Renewable Hydrogen to	NDEI	Stove Hammond	
301001	Green Steel and Ammonia	INNEL	Steve Hammonu	
TA060	Offshore Wind to Hydrogen - Modeling, Analysis, Testing, and International	NDEL	Conquiava Saur	
14060	Collaboration Work	INREL	Genevieve Saur	
TA061	Optimal Wind Turbine Design for H2 Production	NREL	Chris Bay	

	Poster Session - 5:30-7:30 PM				
SDI001a	Integrated Modeling, TEA, and Reference Design for Renewable Hydrogen to Green Steel and Ammonia	NREL	Jennifer King		
SD1006	High Temperature Electrolyzer Megawatt-Scale Test Facility	INL	John Moorehead		
TA013	Fuel Cell Bus Evaluations	NREL	Matthew Post		
TA030	Demonstration of Integrated Hydrogen Production and consumption for Improved Utility Operations	Orlando Utilities Commission	Paul Brooker		
TA051	Low Total Cost of Hydrogen by Exploiting Offshore Wind and PEM Electrolysis Synergies	Giner, Inc	Judith Lattimer		
TA054	AEM Water Electrolyzer for Hydrogen Production from Offshore Wind	Alchemr, Inc	Richard Masel		
TA063	High Efficacy Validation of Hydride Mega Tanks at the ARIES Lab (HEVHY METAL)	NREL	Katherine Hurst		
TA064	Hydrogen Production, Grid Integration, and Scaling for the Future	NREL	Sam Sprik		

- Wednesday: Non-Transportation
 - Manufacturing
 - SOEC Testing / Development
 - Systems Integration w/ Nuclear & Renewables
- <u>SDI Posters</u> Wednesday Evening
- Interagency Session Wednesday
 - DOT Panel
 - Liftoff Report
 - Joint projects with DOD

Systems Development & Integration: Thursday Session Outline

	Thursday, June 8				
TA052	Solid Oxide Electrolysis Cells (SOEC) Integrated with Direct Reduced Iron (DRI) Plants for Producing Green Steel	UCI	Jack Brouwer		
TA053	Grid-Interactive Steelmaking with Hydrogen (GISH)	Missouri S&T	Ronal Omalley		
SD1002	Hybrid Energy Systems, Microgrid in Underserved Communities (Borrego Springs)	NREL	Kumaraguru Prabakar		
	Break (10:30 AM - 11:00 AM)				
TA044	System Demonstration for Supplying Clean, Reliable and Affordable Electric Power to Data Centers using Hydrogen Fuel	Caterpillar	Paul Wang		
TA062	Validation of Interconnection and Interoperability of Grid- Forming Inverters Sourced by Hydrogen Technologies in View of 100% Renewable Microgrids	NREL	Kumaraguru Prabakar		
TA035	Power Electronics for Electrolyzer Applications to Enable Grid Services	NREL	Robert Hovsapian		
	Lunch (12:30 PM - 1:45 PM)				
SDI005	HYdrogen Systems for PERformance-based Value Stacking (HYPER-V)	NREL	Rishabh Jain		

- <u>Thursday: Non-Transportation</u>
 - HySteel
 - \circ Micro-grids using H₂
 - Data centers using H₂
 - \circ Power Electronics

Session Logistics

General Information

- This meeting is a review, not a conference
 - Questions will be taken first from reviewers, and then from other audience members as time allows
 - Remote reviewers are reminded to enter their questions in CHAT
 - Remote general attendees can enter questions or comments into Q&A
- The schedule will be strictly followed so that reviewers can move between sessions
- Presentations are 20 minutes followed by 10 minutes Q&A

Your input on our Program and subprograms helps guide our decisions.

Thank you for your thoughtful, objective, and timely feedback!

Thank You

Jesse Adams Systems Development and Integration Program Manager Hydrogen and Fuel Cell Technologies Office jesse.adams@ee.doe.gov U.S. Department of Energy

www.energy.gov/fuelcells www.hydrogen.energy.gov

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE