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NETL and DOE SOC Research

Energy Efficiency and 
Renewable Energy (EERE)

DOE HQ

Fossil Energy and Carbon 
Management (FECM)

Hydrogen and Fuel Cell 
Technology Office (HFTO)

Advanced Energy Systems 
Program (AES)

H2NEW 
(HTE research)

R-SOFC ProgramFY24 Budget:
$10M (NETL: $1.1M)

EY23 Budget:
$10M (NETL: $4M)

EY24 Budget:
$5M (NETL: $2.5M)

DOE Hydrogen Shot:
$2/kg H2 by FY25
$1/kg H2 by FY30
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FECM R-SOFC Program R&D Goals

KEY TECHNOLOGIES

Core Technology

Systems Development for 

SOFC and Reversible 

Systems

Cell Development

Figure courtesy FuelCell Energy

Figure courtesy LG 

Fuel Cell Systems

Figure courtesy NETL

fecm.energy.gov

Enable:

• Highest efficiency and lowest cost electric power 
generation from hydrogen and natural gas with CCS

• Efficient and cost-effective distributed/utility 
scale hydrogen production

• Flexible modular hybrid SOFC/SOEC system design

Goals:

• Support for data center backup power systems 
using natural gas for short term (kW - MW scale)

• Fuel flexible, high grade SOFC system for combined 
heat and power (CHP)

• Hybrid R-SOFC systems for power production or 
hydrogen production as energy storage 

• Long term goal of a utility scale hybrid R-SOFC 
system (10 MW - 50 MW)
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NETL SOC Capability Overview

Generate comprehensive modeling toolsets for long-term SOFC performance prediction

Apply mitigation strategies to improve performance and longevity of  SOFC

CHALLENGE: SOC technology is cost prohibitive due to long-term performance degradation

APPROACH: Develop degradation modeling and mitigation tools to improve performance / longevity of SSEC

Systems Engineering and Analysis

• Techno-Economic Analysis
• Hybrid configuration assessment
• R&D Goals Evaluation

Electrode Engineering

• Degradation mitigation
• Microstructure optimization
• Technology transfer to industry
• System demonstrations
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Performance Degradation Modeling

• Degradation prediction tools
• Atoms-to-System scale bridging
• Experimental validation
• Advanced Gas, Temperature Sensors
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• Task 2: Cell and Stack Degradation Evaluation and Modeling
• Performance and degradation model development
• Microstructural analysis and analysis methods

• Machine learning for materials studies, electrode design

• Task 3: Electrode Engineering
• Infiltration for degradation mitigation

• R-SOC characterization
• Protonic SOC materials characterization and development

• Advanced electrode design and manufacturing

• S/TEM analysis of cell degradation

• Task 4: Strategic Systems Analysis and Engineering
• R-SOC, SOEC system studies
• SOFC scaling study, H2-fueled SOFC market study

• Task 5: Cyber Physical Modeling
• 1D real-time SOEC stack model development

• Controls design for dynamic operation of SOC stacks

NETL SOFC Work Plan Tasks
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Strategic Systems Analysis 
and Engineering

Defining SOC operation
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NETL is exploring whether coupled integrated energy systems with the flexibility to produce both power and 
hydrogen should play a role in decarbonizing the US power sector by 2035 and broader economy by 2050.

Reversible Solid Oxide Cell Systems Analysis

11

Profitable

Not Profitable

Breakeven curves for H2/Power Production

See “Technoeconomic Evaluation of SOFC Hydrogen/Electricity Co-Generation Concepts”
https://www.osti.gov/servlets/purl/1960782 

https://www.osti.gov/servlets/purl/1960782
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Reversible systems offer profitability across the greatest number of scenarios

Market-based Technoeconomic Optimization

12

Price Scenarios (from lowest to highest median Locational Marginal Pricing)

NG Prices: 1.14 to 10.47 $/MMBTU, H2 Price: $2/kg



Motivation: 2014 SOFC Pathway Studies
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Baseline

Overpotential [mV] 140

Fuel Utilization [%] 90

Degrad. [%/1000 h] 1.5

Inverter Effy. [%] 97

Stack Cost [$/kW] 225

CF [%] 80

Reducing stack degradation 

had the largest impact on 

reducing cost of electricity of a 
550 MW IGFC Plant

Source: NETL, Techno-Economic Analysis of Integrated Gasification Fuel 

Cell Systems, November 2014, DOE/NETL-341/112613 

For fuel cell applications, 

performance and 

performance degradation can 

effectively drive down COE 



Atmospheric System

SOEC Pathway Design Basis

Source: NETL

• SOEC H2 production facility sized 
to 1 GWDC electrical input
• Produces ~250,000 metric 

tons annually, about 2.5% of 
annual U.S. H2 production

• Stacks operated at the 
thermoneutral voltage (~1.28V)

• All steam and heat generated by 
electric boilers and heaters

• H2 recycle to ensure >10% H2 in 
the feed to the stack

• Sweep air flow 
controlled to ensure 
<35 mol% oxygen in air-
electrode exhaust DC = Direct current

HTX = Heat exchanger

TSA = Temperature swing absorption

G. Hackett, “Recent Progress in Solid Oxide Cell Technology Analysis at NETL”, 2024 FECM Spring R&D Project 
Review Meeting, Pittsburgh, PA, April 23-25, 2024. 14



Key Parameters – State of the Art

Design Basis

State-of-the-Art SOEC Assumptions

Parameter Value Justification

Current density, mA/cm2 500 Operating condition of 9 out of 16 stacks in the literature review

Degradation rate, mV/1,000 hr 8 Post-2016 average degradation rate from literature review (~0.62%/kh)

Operating temperature, °C 850 Operating temperature of the MultiPHLY (2.6 MWAC) and GrInHy2.0 (720 kWAC) projects

Overall steam utilization 80%
Several stack tests from the literature review operated at a 70% single pass conversion; 
recycle can be used to obtain an 80% overall conversion

Capacity factor 90% Similar to commercial H2-producing gas reforming plants used in the H2 baseline study

Stack cost, $/kW 300
Used in EERE SOEC study (adjusted to 2018$); value used by INL in several SOEC studies; 
$300/kW for FOAK, $155/kW for NOAK

EERE = Office of Energy Efficiency and Renewable Energy

INL = Idaho National Laboratory

FOAK = First of a kind

NOAK = Nth of a kind

G. Hackett, “Recent Progress in Solid Oxide Cell Technology Analysis at NETL”, 2024 FECM Spring R&D Project 
Review Meeting, Pittsburgh, PA, April 23-25, 2024. 15



SOEC Pathway Design Basis

Source: NETL

G. Hackett, “Recent Progress in Solid Oxide Cell Technology Analysis at NETL”, 2024 FECM Spring R&D Project 
Review Meeting, Pittsburgh, PA, April 23-25, 2024. 16



Selected Study Results



Atmospheric & Pressurized Efficiency

Performance Results

Source: NETLLHV = Lower heating value
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SOTA Atmospheric vs Advanced Atmospheric

Total Plant Costs

Source: NETLBOP = Balance of plant
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SOTA Pressurized vs Advanced Pressurized

Total Plant Costs

Source: NETL
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Atmospheric & Pressurized LCOH

Source: NETL
Electricity price = $60/MWh
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Pressurized Pathway Waterfall Plot

Source: NETL
Electricity price = $60/MWh
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Providing perspective for Hydrogen Shot goal

Electricity Price Needed for $1/kg

Source: NETL
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Providing perspective for H2NEW goal

Electricity Price Needed for $2/kg

Source: NETL
Electricity price = $60/MWh
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Sensitivity to Free Waste Heat Availability

Source: NETL

SOTA ATM ADV ATM SOTA PRES ADV PRES
Electricity price = $60/MWh
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• The total LCOH reduction (without electricity) over both pathways was ~ $0.50/kg (70%) 
• When an electricity cost of $60/MWh was considered, the total reduction was ~ 

$0.55/kg (15%)

• Reductions in degradation rates and increases in current density were shown to have 
the largest impacts on the LCOH
• Decreasing the degradation rate from 8 to 2 mV/kh contributed over 50% of the total 

LCOH reduction (without electricity)

• Increasing the current density from 0.5 to 1.0 mA/cm2 contributed about 25% of the 
total LCOH reduction (without electricity)

• Completely replacing the auxiliary load of the electric boiler with free waste heat can 
also decrease the LCOH by $0.50/kg when electricity is $60/MWh
• Effect is less pronounced at lower electricity prices (e.g., at $30/MWh the LCOH 

reduction would be ~ $0.25/kg)

SOEC Pathway Study Conclusions

26



Designing better electrodes

Microstructure



Integrated Cell Degradation Model

3D Electrode 
Microstructures

Degradation models
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• Coarsening
• Secondary phases
• Poisoning
• Interdiffusion
• Cracking/delamination

• Particle sizes
• Volume fraction
• Distributions
• Heterogeneity
• Tortuosity

• Polarization curves
• Impedance spectra
• T, P Distributions
• Hotspots

SOFC degradation from coarsening shown. Framework can be 

used in SOFC, SOEC, and r-SOC mode with multiple modes.
28



• Simulations run on database of 1000s of synthetic microstructure covering large matrix of 
microstructural parameter combinations (particle sizes, phase fractions, particle size 
distribution, phase fraction distribution, etc.)

How to determine what’s a good or bad electrode?

Analyzing performance degradation

29

Need a single figure-of-merit that 

captures both initial performance 

and stability

Lifetime energy production chosen.

Presently: operation at a given current density,

 up to a given time

NETL Microstructure Resources
• SOC Synthetic Electrode Microstructure Database

• 1,970 unique 3-phase electrode microstructure files
• DOI: 10.18141/1988063

• PFIB-SEM 3D reconstructions of real SOFC electrodes:
 DOI: 10.18141/1425617

https://www.osti.gov/scitech/search/filter-results:FD/semantic:10.18141/1988063


SOFC Cathode Feature Importance Ranking

LSM/YSZ

D-LSM 

D-pore

Porosity

σ-pore

σ-LSM

D-YSZ

σ-YSZ

HF-LSM

HF-YSZ

HF-pore

LSM/YSZ

Porosity

D-LSM

D-YSZ

D-pore

HF-YSZ

σ -YSZ

σ-pore

σ-LSM

HF-pore

HF-LSM

Impact on voltage decay [%/khr] Impact on lifetime energy [Wh/cm2]

Small LSM particle sizes are bad for voltage decay, but 

net good for lifetime performance - 

worthwhile tradeoff.
Lower LSM/YSZ ratio is good for both metrics

Lower is better Higher is better

30W. K. Epting et al., ECS Trans., 103, 909 (2021).

Each point represents a 
feature value from a 

specific simulated 
electrode microstructure
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Linking SOEC lifetime performance to economics

SOEC Figures of Merit
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“Lifetime” energy consumed – at a given 

current density (and hence H2 rate)
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Area = “lifetime” energy consumed 

[Wh/cm2/khr]

Galvanostatic, icell = 0.4 A/cm2 Potentiostatic, Vcell = 1.3 V

Area = “lifetime” Amp-hrs/cm2/khr

Faraday’s law → kgH2/cm2/khr

“Lifetime” H2 produced – at a given 

voltage (chosen roughly thermoneutral)



Feature Importance
Impact on H2 Produced 

[kg/cm2/khr]

Impact on energy consumed 

[Wh/cm2/khr]

Low Ni/YSZ ratio, low porosity, small solid particles beneficial for both, but 

rankings are different

Other figures of merit (e.g. degr. only) may show different dependence

32
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Making specific recommendations

Fuel Elec. from supplier A

Fuel Elec. from supplier B

Your electrode here??

Biggest drain was pore size

33

Commercial electrodes’ 
initial microstructural 

parameters (measured)

ML model trained on bank 
of results from synthetic 

microstructures

SHAP analysis to estimate 
feature impact in 

commercial electrodes

Shown here for H2 
produced

Low Ni/YSZ ratio, small solid particles 
were good choices



Designing better electrodes

Electrode Materials



O p-band correlates well with air electrode material properties

Developing materials through DFT

35
[1] Lee, et al., Eng Env Sci (2011) [2] Jacobs, et al., Adv. Eng. Mat. (2018)
[3] Jacobs, et al., Chem. Mat. (2019)

ORR 

surface 

exchange

[1]

From predicted k* using DFT-

calculated O p-band center of 

>2100 perovskites, NETL examined 
Ba(Fe, Co, Zr)O3 (BFCZ) materials

LSCF

BSCF



Higher kchem, improved stability, not enough sel

BFCZ (Zr = 25, 50, 75%) Performance

36

All BFCZ compositions highly active, on 

par with BSCF, with only 0.5 log kchem 

difference over entire Zr range

[1] Jacobs, R., et al. Adv. Eng. Mat. (2022)

LSCF/BFCZ75 composite

LSCF/BFCZ75 composite shows about 9x 
reduction in ASR at 800 °C, 65% less 

performance degradation vs. LSCF



Using machine learning for faster calculations, larger sampling space

Machine learning prediction of properties

37

Jacobs, R., et al. Adv. Eng. Mat. (2024), just accepted

Data points discussed:  Jacobs, R., et al. arXiv: https://doi.org/10.48550/arXiv.2310.17744 (2023)

• 749 data points from 313 studies for 
299 unique perovskite compositions

• Elemental features calculated using 
MAST-ML (UW-M) instead of using DFT

• 19 million perovskite oxides were 
examined using ML model

Property
Number of 

studies 
examined

Number of 

measurements 
extracted

Number of 

unique 
materials

kchem 70 98 62

Dchem 56 83 58

k* 39 80 48

D* 37 66 42

ASR 235 422 257

https://doi.org/10.48550/arXiv.2310.17744


• Trained machine learning model could predict properties faster and at least as 
accurately than DFT-based study and could cover a larger space containing 
traditionally less-explored elements (e.g., K, Bi, Y, Ni, Cu).

Machine learning predicted electrode materials

38
Jacobs, R., et al. Adv. Energy. Mat, 2303684 2024. (doi.org/10.1002/aenm.202303684)

Jacobs, R., et al. ACS Applied Energy. Mat, Accepted, 2024. (doi.org/10.1021/acsaem.4c00125)



Wrap-Up



Conclusions
• For SOEC systems, reductions in degradation rates and increases in current density could reduce 

LCOH by $0.50/kg H2

• Modeling is useful tool for deeper interpretation of performance data, designing more durable 
electrodes, and providing context to literature results

• Machine learning is useful tool for accelerating electrode/cell development and providing 
guidance for improving specific cells

How can NETL help you?
• NETL’s synthetic microstructure database, real 3D microstructures, and microstructural analysis 

tools are available to the public

• NETL can collaborate with partners, using partner data and conditions to run performance 
degradation-related simulations 

Wrap Up
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• This work was performed in support of the U.S. Department of Energy’s (DOE) Fossil 
Energy and Carbon Management’s Solid Oxide Fuel Cell Research Program and executed 
through the National Energy Technology Laboratory (NETL) Research & Innovation 
Center’s Solid Oxide Fuel Cell FWP 1022411 .
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