

Real-time Ionic Liquid Electrochemical Sensor for Highly Sensitive and Selective hydrogen Detection and Quantification

PI: Xiangqun Zeng

Departments of Chemistry, Chemical and Biomedical Engineering,
University of Missouri, Columbia, MO 65211

DOE project award # DE-EE0010744

Date: 5/7/2024

DOE Hydrogen Program
2024 Annual Merit Review and Peer Evaluation Meeting

AMR Project ID # SCS038

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Goal and Objectives

Goal:

(i) achieving H₂ detection at the ppb level, (ii) design, optimization, and miniaturization of an innovative ionic liquid-based hydrogen sensor, (iii) developing a full-scale prototype and the characterization, calibration, and validation of its analytical performance for continuous hydrogen monitoring with high sensitivity and specificity in its expected commercialization translation.

Objectives:

- 1. Advance and optimize a miniaturized electrochemical H₂ sensor to detect and quantify ppb level H₂ leak**
 - Use experimental, computational, and engineering approaches to optimize a miniaturized H₂ sensor with enhanced ppb level sensitivity and high specificity regarding ambient interferent gases and various environmental conditions for continuous and real-time H₂ sensing*
- 2. Develop and validate a full-scale H₂ sensor prototype.**
 - Develop a compact, energy-efficient electronic system capable of accurate result visualization and data management for the miniaturized H₂ sensor developed for a full-scale H₂ sensor prototype*
- 3. Characterize and validate the full-scale H₂ sensor prototype and benchmark its analytical performance in the field.**
 - Characterize the full-scale H₂ sensor prototype and validate and benchmark its analytical performance by collaboration with the National Renewal Energy Lab for independent metrological performance validation toward commercialization.*

Project Overview

H₂ Sensing Barriers

Current Technology:

- Pd-based H₂ sensors: sensing materials degradation, humidity & CO poison effects, signal drift with time.
- Metal oxides-based H₂ sensors: poor selectivity, sensor materials can be poisoned
- Indirect colorimetric H₂ sensor: not real-time response, sensing materials degrade, and sensitivity dependent on temperature.
- Traditional Electrochemical H₂ sensor: Evaporation or decomposition of electrolyte/solvent, Electrolyte is corrosive, Limited lifetime or response characteristics if the products of the reactions are electrode poisons.
- **The needs:** high sensitivity to detect ppb level of emission of H₂; high stability in ambient conditions; high permissibility in harsh conditions; miniaturization, low cost, low power, and real-time sensing

Timeline

Project Start Date:
tentative 05/01/2024

Project End Date:
tentative 04/30/2027

Budget

In negotiation

Any proposed future work is
subject to change based on
funding levels

Team and Partners

Project Lead: PI, Xiangqun Zeng, Departments of chemistry, chemical and biomedical engineering, Univ. of Missouri

H₂ sensor and sensor system development, testing, and validation

Co-PI(s) and Partner organization(s) and role(s)

• Wei Lai, Department of Chemical and material engineering, Michigan State Univ.,

H₂ sensing mechanism investigation

• Yong Xu, Department of Electrical and computer Engineering, Wayne State Univ.,

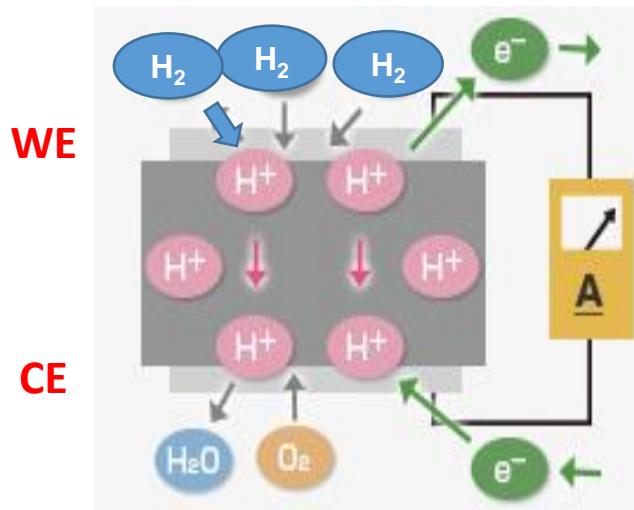
H₂ sensor chip design and fabrication

• Hongwei Qu, Department of Electrical and computer engineering, Oakland Univ.,

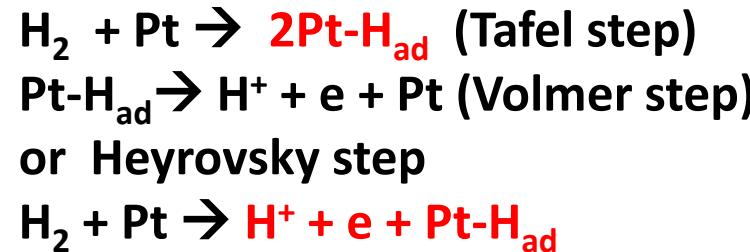
H₂ sensor system prototype development

• William Buttner and David Peaslee, National Renewable Energy lab (NREL)

H₂ sensor prototype test, validation, and benchmarking


Potential Impact

Real-time and Continuous-use H₂ Sensor Meet Cost/Utility/Capability requirements:

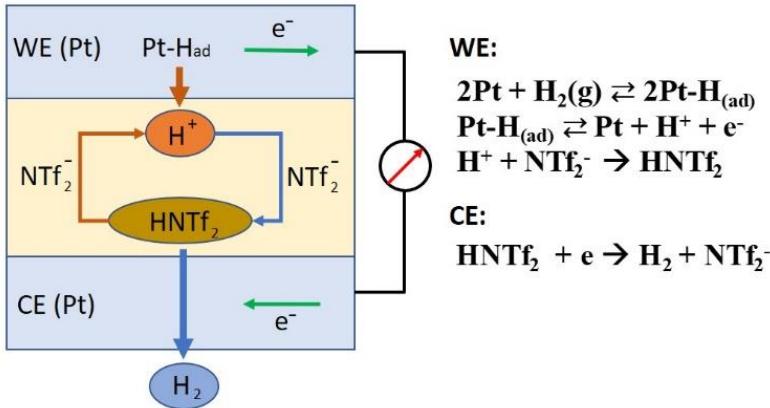

Our novel real-time, highly sensitive and selective electrochemical H₂ sensor with robust sensing materials aim to fill the current technical gap in H₂ sensing technologies and deliver a combination of accuracy, reliability, small size, low cost, real-time measurement and autonomous operation that could provide revolutionary capability for monitoring the H₂ emission and the H₂ leakage rate in various applications involving the use of H₂

Project Technical Approach

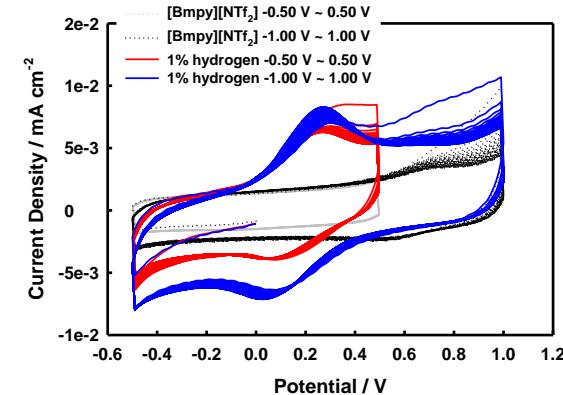
Traditional Electrochemical Hydrogen Sensor

Working electrode (WE):

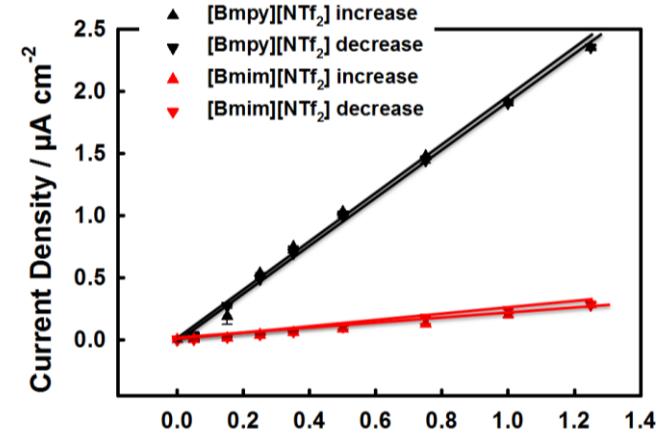
Counter Electrode (CE):

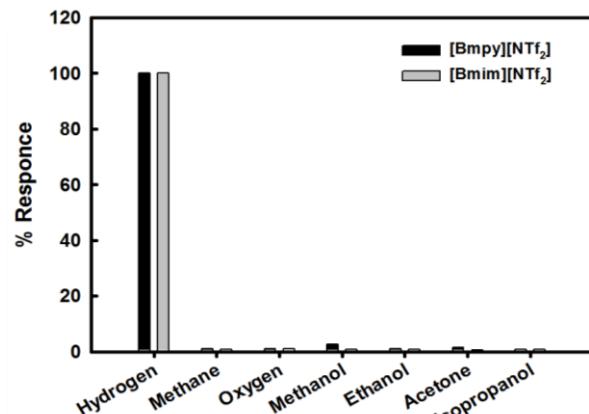

Key problems:

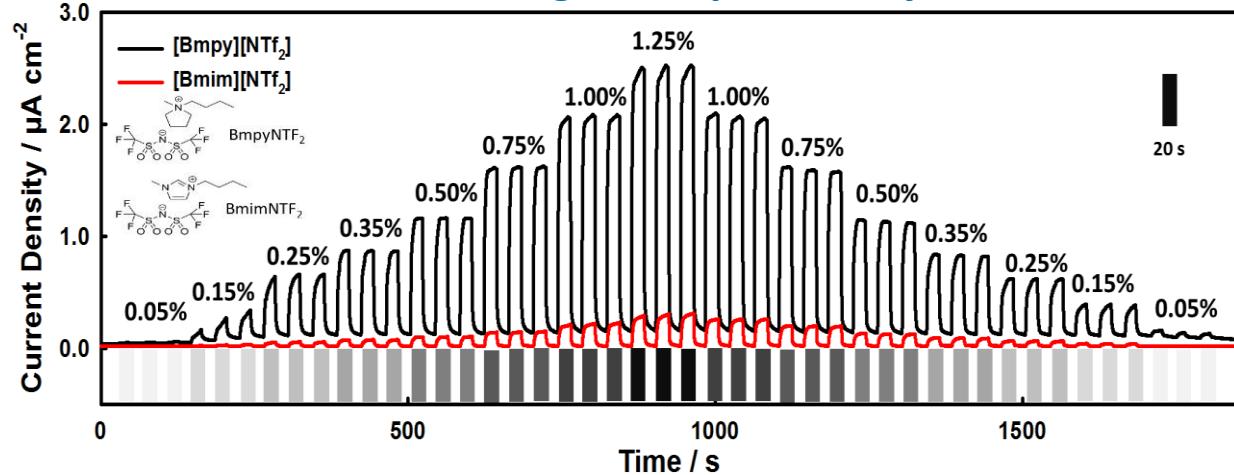
- Evaporation/decomposition of electrolyte/solvent
- Electrolyte is corrosive
- Thermal instability at both high and low temperatures
- Limited lifetime or response characteristics if the product of the reactions are electrode poisons


Project Technical Approach

Ionic liquid electrochemical H_2 sensor for continuous H_2 monitoring

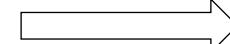
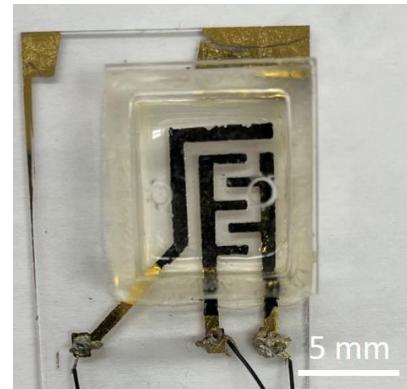
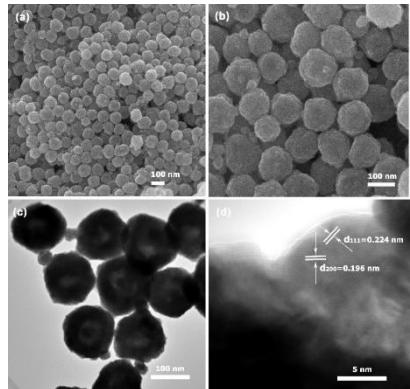

Sensing mechanisms and reactions


Reversibility

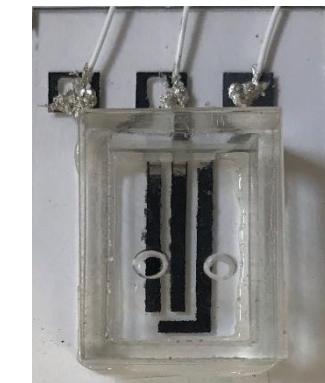
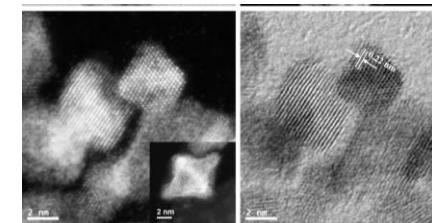

Linearity

Selectivity

Real-time sensing and repeatability

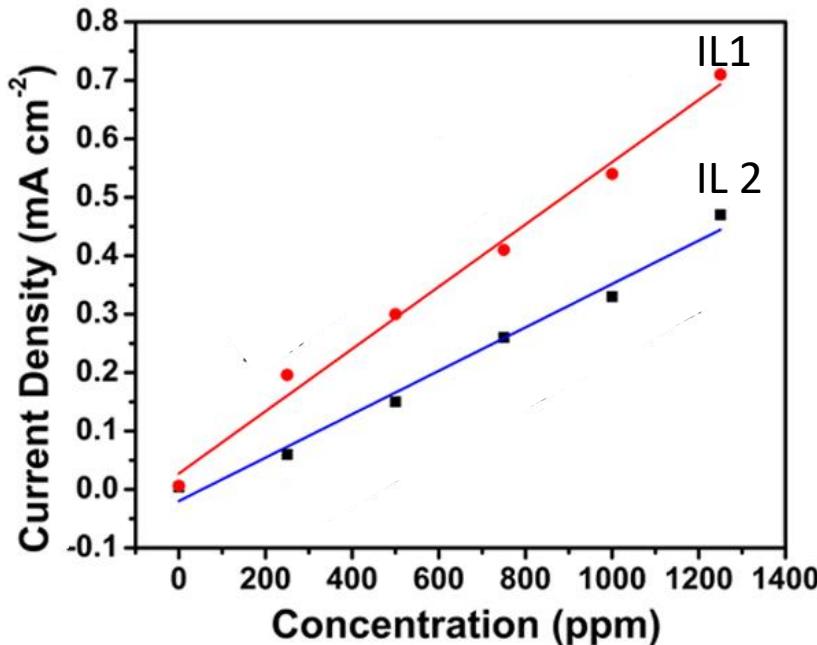



- Sensitive
- Reproducible
- Fast and real-time
- Quantitative

Accomplishments and Progress

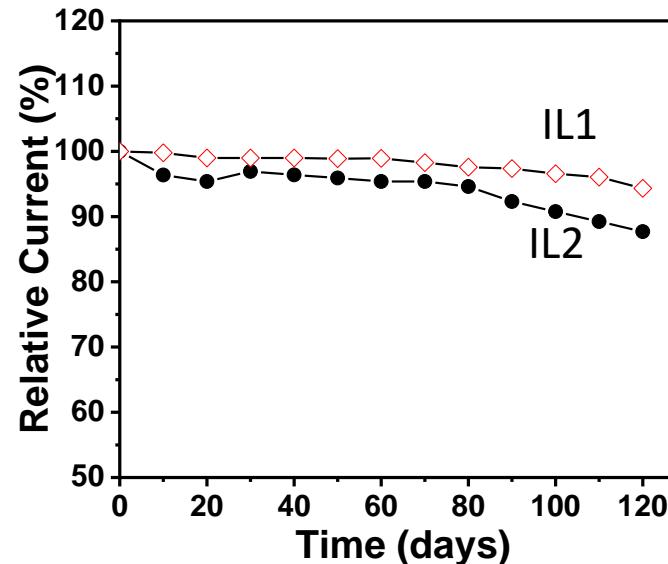


Bimetallic nanocrystal synthesis and characterization for miniaturized H₂ sensor

- Metal nanocrystals with high surface areas and controlled surface structures provide high sensitivity and selectivity for electrochemical sensing.
- Metal nanocrystals with unique shape and size allow for the understanding of the structure-activity relationships for electrocatalysis
- Developed new methods for successfully synthesizing Bimetallic nanocrystals with over 10 times reduction in size compared to the nanoparticles made before.
- Characterized Bimetallic nanocrystals by multiple techniques to determine their physical and chemical properties by XRD, XPS, and TEM

Prior work: Bimetallic nanoparticle and miniaturized H₂ sensor device



Current work: Bimetallic nanocrystal and miniaturized H₂ sensor device

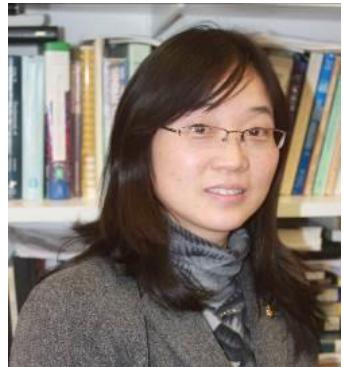


Accomplishments and Progress

H_2 sensing sensitivity

H_2 sensor stability

Highly selective with none or negligible interference from common ambient gaseous species: O_2 , N_2 , CO_2 , CO , common hydrocarbon and volatile organic Compounds


4.8 ppm detection limits achieved

H_2 sensor with bimetallic nanocrystals and Ionic Liquids provide high sensitivity, high selectivity, and high stability for real-time and continuous sensing H_2

Safety Planning and Culture

- This project is not **REQUIRED** to submit a safety plan to the Hydrogen Safety Panel (HSP)
- Safety Plan and Culture
 - Key personnel attended the Hydrogen Laboratories: Safety Considerations Webinar on September 14, 2023.
 - Specific Team members assigned for management, assessment, and inspection roles for safety and safety hazards
 - Design Monthly Safety meetings to achieve the best safety practices and lessons learned.
 - Laboratory personnel completed the Univ. Chemical Safety training and reporting safety concerns.

Collaboration and Coordination

Dr. Xiangqun Zeng

Professor of Chemistry, Chemical and Biomedical Engineering, Univ. of Missouri Columbia

Role: Principal Investigator

Expertise: Analytical chemistry, electrochemistry, and chemical and biosensor science.

Co-PIs

Consultants

Wei Lai
*Material scientist,
Associate Professor*
Materials Design,
Characterization
Atomistic
Simulation

Yong Xu
*Sensor Engineer
Professor*
Micro/nano
Sensor design &
Fabrication

Hongwei Qu
*Electrical Engineer
Professor*
MEMS
Electronic
Circuits & devices

William Buttner
Director
HSR&D program

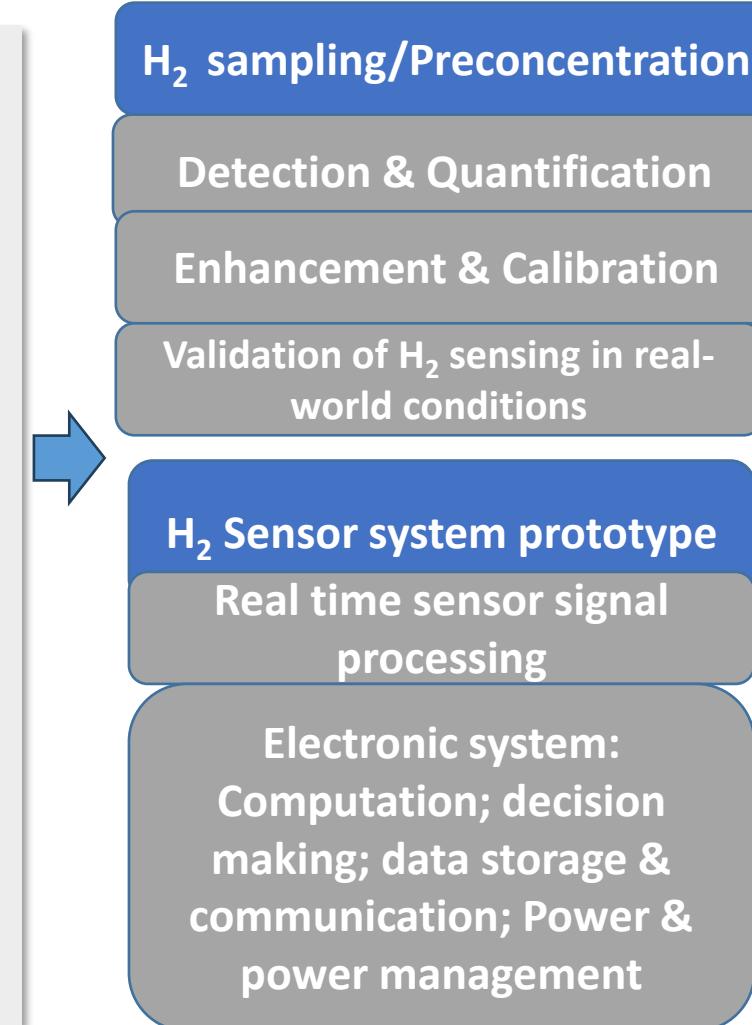
David Peaslee
Hydrogen Systems
Researcher III

Mike Sevilla
*Physical chemist
Emeritus
distinguished
professor*
Free radical
chemistry

Jiwu Zhang
*Biomedical
Engineer and
Entrepreneur*

DEI/Community Benefits Plans and Activities

Year	DEI activities
1	DEI training for all team members
2	Recruit female and minority students and/or postdocs for this project.
2	Develop community outreach program such as workshops of H ₂ economy and hydrogen sensor technology for local K-12 schools and/or community colleges
3	Broadly disseminate results of research and development in minority serving and underserved communities
3	Identify minority business enterprises, minority owned business, woman owned businesses and veteran owned businesses for commercialization activities.


Remaining Challenges and Barriers

- Developing miniaturized H₂ sensor with extremely high sensitivity for real-time and continuous detection of H₂ in real-world conditions
 - ◆ Sensor stability or signal drift in real-world conditions
 - Temperature
 - Humidity
 - Sensing elements' stability
 - ◆ Technical and economic challenges
 - Complexity
 - Cost
 - Size
 - Power consumption

Proposed Future Work

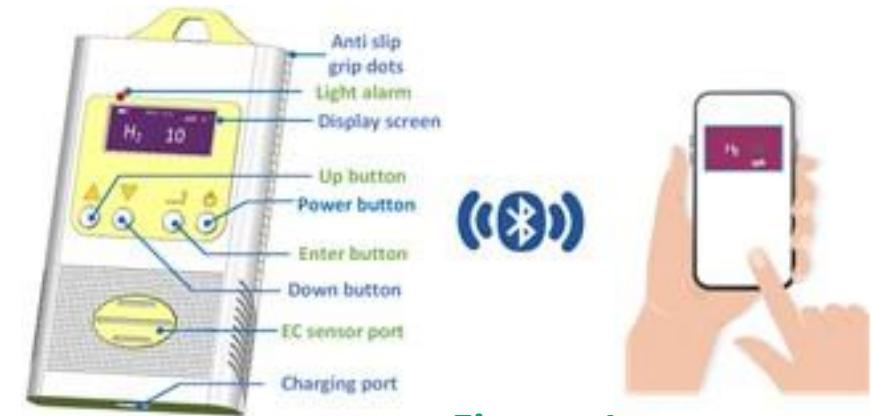
Systematic H₂ sensor optimization with novel electrolyte and electrode materials to achieve real-time H₂ sensing with ppb level sensitivity and H₂ sensor prototype development and validation in real world conditions

- **Sensing materials optimization**
enhance H₂ / H⁺ transport, suppress transport of interferents and provide a mechanism for ppb level of sensitivity for H₂ detection.
- **Sensing method development**
 - ♦ provide high selectivity for H₂ sensing with multi-gas detection capability
 - ♦ multi-mode sensing to provide cross validation and calibration
- **Sensing system integration**
 - ♦ H₂ sensor prototype meets cost/utility/capability requirements

Miniaturized H₂ sensor prototype

- Accurate
- Reliable
- Robust
- Small size
- Low power
- Low cost
- Mobile

Research Tasks and Schedule


Objective 1. Advance/optimize a miniaturized H ₂ sensor with ppb sensitivity	Y1	Y2	Y3
(i). Develop metallic catalytic electrode materials (Zeng/Lai)	x	x	
(ii). Optimize ionic liquid (IL) properties (Lai/Zeng/Sevilla)	x	x	
(iii). Miniaturized H ₂ sensor chip development and optimization (Xu)	x	x	
(iv). Miniaturized H ₂ sensor chip characterization for H ₂ sensing performance (Zeng/Xu)	x	x	
Milestones/decision points: < 10 ppb sensitivity achieved at ambient conditions			
Objective 2. Develop a full-scale H ₂ sensor prototype			
(i). Develop miniaturized instrumentation electronics (Qu)	x	x	
(ii). Develop software for sensor control, data processing, and calibration (Qu)	x	x	
(iii). Sensor system integration, characterization, and validation (Qu/Xu)		x	x
Milestones/decision points: a full-scale miniaturized and integrated H ₂ sensor prototype that has similar or better performance compared to benchtop instruments			
Objective 3. Validate and benchmarking the full-scale H ₂ sensor prototype			
(i) H ₂ sensor system performance lab testing (Zeng/Qu/Xu)	x	x	x
(ii) H ₂ sensor system performance field testing and benchmarking (Zeng/Qu/Buttner/Post)			x
End project goals: a miniaturized full-scale H ₂ sensor prototype with a limit of detection (LOD) < 10 ppb, high reliability (>99.99% accuracy, <0.1% drift in 90 days) at varying ambient conditions, real-time sensing, H ₂ sensor system miniaturization and low cost .			x

Project Summary

Our DOE project is to advance our innovative ionic liquid-based electrochemical hydrogen sensor with extremely high sensitivity and specificity and develop a full-scale H₂ sensor prototype, and the characterization and validation of its analytical performance for expected commercialization translation for monitoring the environmental impacts of hydrogen economy.

Table 1. Features of IL electrochemical H₂ sensor prototype

Detection limit	<10 ppb	Wireless	Bluetooth
Linear range	10 ppb to 100ppm	Lifetime	> 2 years
Response time	< 30 s	Temperature	-30 to 80 °C
Drift	< 0.1% in 90 days	Humidity	0-98%
Size, weight	< 5 in ³ , < 4 oz.	Calibration	1 year interval
~ Cost	< \$ 50 /unit	Power	5V battery
Average power	< 300 mW* (use mode dependent. Equivalent power consumption will be much smaller for practically reasonable periodical sensing)		

Figure. 1

Successful development of our real-time, highly sensitive, and selective ionic liquid-based electrochemical H₂ sensor will fill the current technology gap and deliver a combination of accuracy, reliability, small size, low cost, real-time measurement, and autonomous operation that could provide a revolutionary capability for monitoring the H₂ emission and the H₂ leakage rate in various applications involving the use of H₂.