Hydrogen Storage System Modeling:

Public Access, Maintenance, and Enhancements

Team: Matthew Thornton (PI), Sam Sprik, Kriston Brooks, and David Tamburello

SAYANNAH RIYER NATIONAL LABORATORY

DOE Hydrogen and Fuel Cells Program
2020 Annual Merit Review and Peer Evaluation Meeting
May 20, 2020

Project ID # ST008

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

• Start: October 1, 2015

• End: September 30, 2021*

Budget

Total Project Funding: \$1,630,000*

o FY16 Funding: \$336,000

FY17 Funding: \$389,000

FY18 Funding: \$375,000

o FY19 Funding: \$275,000

FY20 Funding: \$255,000

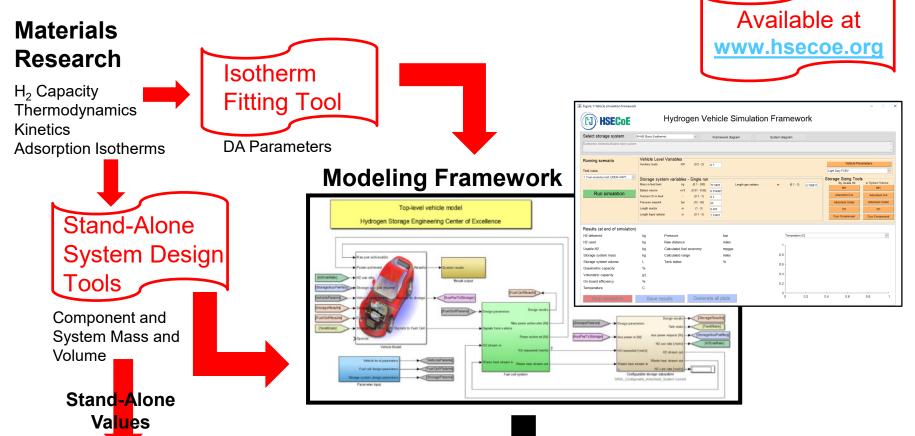
Barriers

- A. System Weight and Volume
- **B.** System Cost
- C. Efficiency
- E. Charging/Discharging Rates
- I. Dispensing Technology
- K. System Life-Cycle Assessment

Partners

^{*}Project continuation and direction determined annually by DOE.

Relevance


Collaborative effort to manage, update, and enhance hydrogen storage system models developed under the Hydrogen Storage Engineering Center of Excellence (HSECoE)

- Transfer engineering development knowledge from HSECoE on to future materials research.
- Manage the HSECoE model dissemination web page.
- Manage, update, enhance, and validate the modeling framework and the specific storage system models developed by the HSECoE.
- Develop models that will accept direct materials property inputs and can be measured by materials researchers.
- <u>Ultimate Goal</u>: Provide validated modeling tools that researchers will use to evaluate the performance of their new materials in engineered systems relative to the DOE Technical Targets.

Relevance – Addressing Barriers with Models

Barriers	Model Addressing Barrier
A. System Weight and Volume	System Estimator
B. System Cost	Tank Volume/Cost Model
C. Efficiency	Framework Model - Onboard Efficiency - Fuel Economy
E. Charging/Discharging Rates	Framework Model - Drive Cycles
I. Dispensing Technology	Framework Model - Initial and Final System Conditions
K. System Life-Cycle Assessment	All Models

Approach – Improving Model Utilities for Materials Researchers

Estimated Gravimetric and Volumetric Capacity

DOE Technical Targets

Gravimetric and Volumetric Capacity
Durability and Operability
Operating Temperature and Pressure
Onboard Efficiency
Charging/Discharging Rates
Start-up
Refueling

Modeling Tools Available or In Progress

Framework Model with:

Physical Storage UTRC/NREL

Compressed/Cryo-Compressed H₂ SRNL/NREL

Chemical Hydrogen (CH) PNNL/NREL

Adsorbent (AD) SRNL/NREL

PNNL/NREL Metal Hydride (MH)

Estimate performance of lightduty vehicles with four drive cycles for each storage system

Stand-Alone System Design Tools:

Adsorbent (AD) SRNL New MS Excel-based tool

New MS Excel-based tool **Chemical Hydrogen (CH) PNNL**

New MS Excel-based tool Metal Hydride (MH) **PNNL**

Compressed/Cryo-Compressed H₂ **SRNL**

Additional Tools/Models:

MH Acceptability Envelope (MHAE) **SRNL**

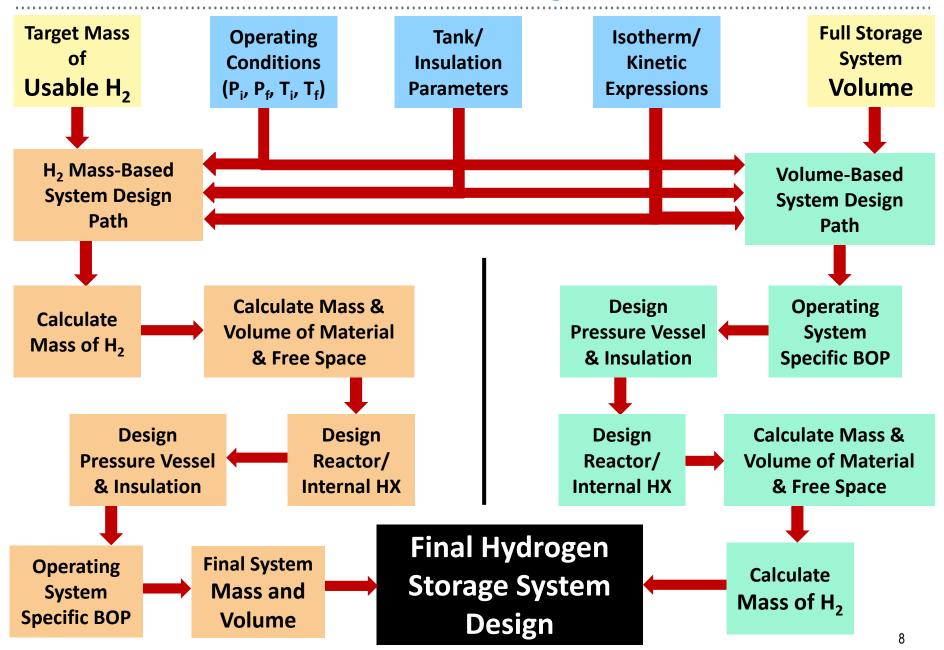
Tank Volume/Cost Model **PNNL**

AD Isotherm Fitting Tool SRNL

Finite Element Models:

SRNL Metal Hydride (MH) Finite Element (MHFE) Tank heat and mass transfer models **SRNL**

UTRC: United Technologies Research Center

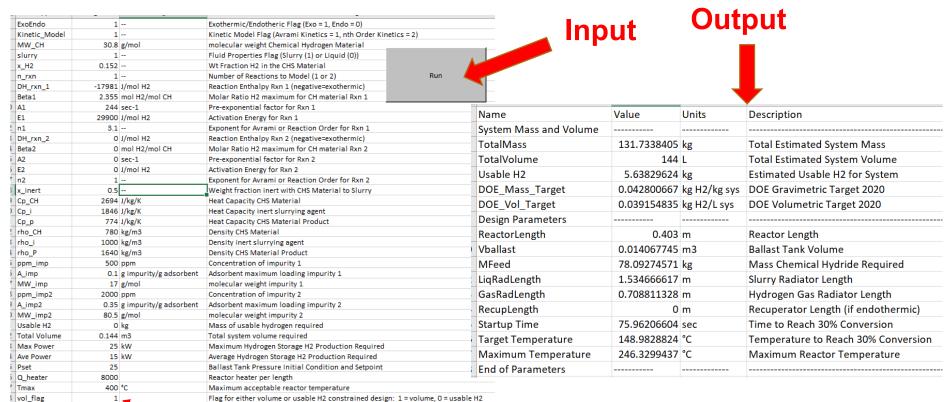

Adsorbent (AD) – HexCell and MATI

Accomplishments and Progress – Design Tools and Framework Estimate Allow Evaluation of Hydrogen Storage Systems

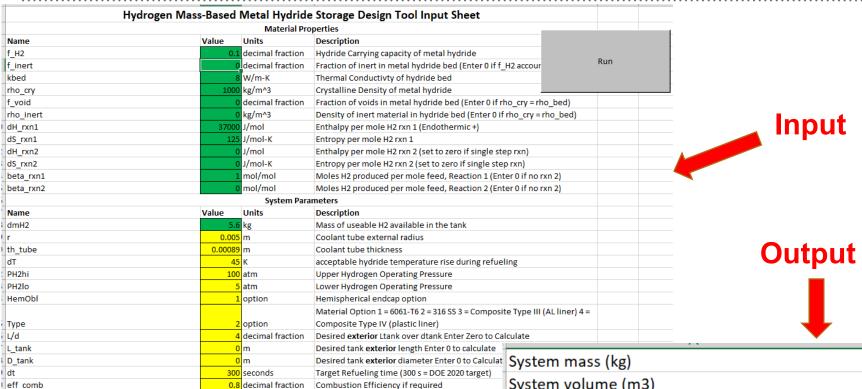
Capabilities:

- Stand-alone design tools now available in Microsoft Excel for adsorbents, metal hydrides, chemical hydrogen storage, and pure hydrogen storage
- Usable-H₂-mass-based and full storage-systemvolume-based capabilities for each design tool
- Multiple kinetics/isotherm expressions available in the stand-alone tools and framework for each storage method
- All models allow material-specific property inputs measured by materials researchers to design materialspecific storage systems

Accomplishments and Progress – Design Tools Flowchart


Accomplishments and Progress – Model Improvements

Original Model	Updated Model					
Adsorbent Model						
Balance of plant (BOP) for cryogenic operation only	BOP options for room temperature, cold, and cryogenic operations					
Insulation thickness hard-coded to 1 inch	Insulation thickness is user controlled					
LN ₂ tank cooling channel always included	LN ₂ tank cooling channels user controlled					
D-A isotherm model used only	D-A and UNILAN isotherm model options					
MOF-5 material properties hard-coded	User-defined adsorbent material properties (with MOF-5 default values)					
Mass of usable H ₂ is the starting point of the calculation	Mass of usable H ₂ or maximum total storage system volume starting point					
Metal Hyd	dride Model					
Single step irreversible reaction	Single step irreversible or two step reversible models selectable					
Hard-coded reaction rate and enthalpy (30 kJ/mol)	Reaction parameters and material properties as inputs					
Mass of usable H ₂ is the starting point of the calculation	Mass of usable H ₂ or maximum total storage system volume starting point ⁹					

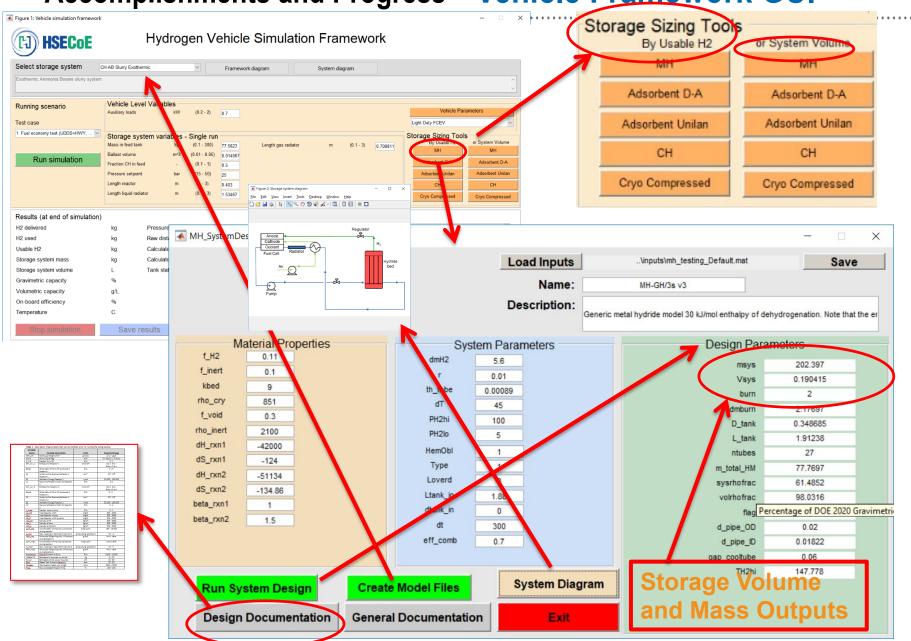

Excel-Based Chemical Hydrogen Storage Stand-Alone Tool

MS Excel-based tools allow universal availability without cumbersome downloads of MATLAB products

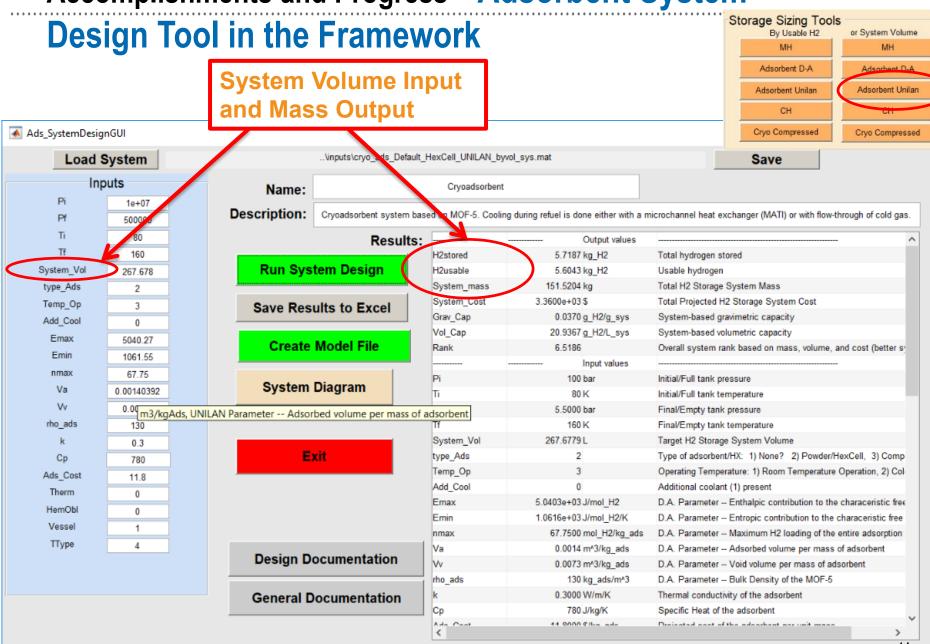
- Usable-H₂-mass-based and system-volume-based tools available
- Downloads available for ammonia borane and alane can be downloaded and modified for other liquid/slurry-based chemical hydrogen storage materials

Excel-Based Metal Hydride Stand-Alone Design Tools

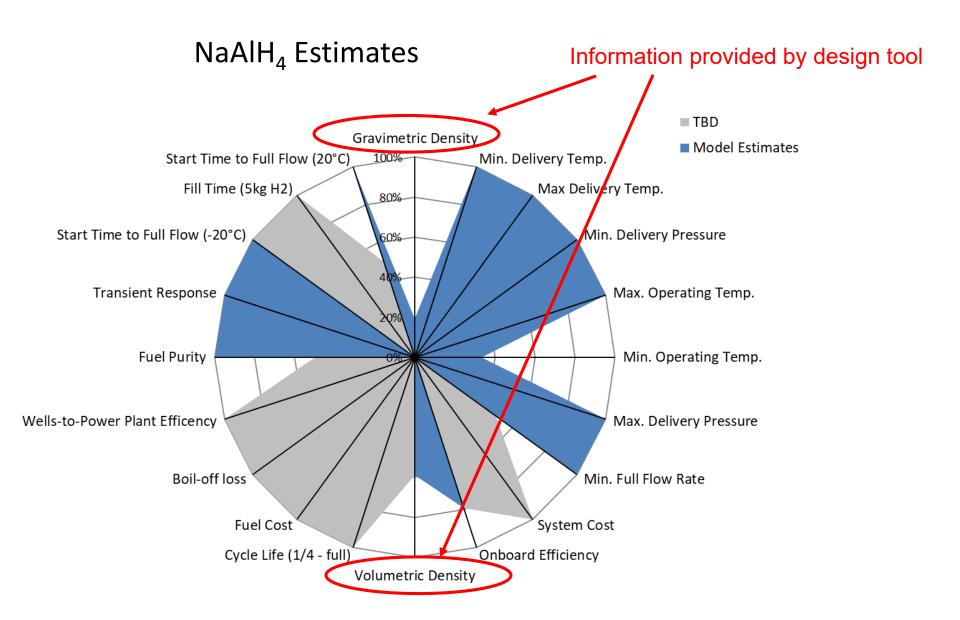
- Separate models for mass-of-usable-H₂constrained and system-volumeconstrained design tools
- Models based on thermodynamics and heat transfer only; no kinetics or mass transfer included


Ca	culate	
lat	System mass (kg)	225.5653
	System volume (m3)	0.112287
	Combustor y>0/n=0	1
	Mass H2 Burned (kg)	1.321687
	Tank Outer Diameter (m)	0.32275
	Tank Length (m)	1.249055
	Number of coolant Tubes	101
	Total Hydride Mass (kg)	69.21687
	Tank Mass (kg)	117.0723
	Maximum Temperature (°C)	153.45
	Percentage of DOE 2025 Gravimetric Target (%)	45.13911
	Percentage of DOE 2025 Volumetric Target (%)	124.6804
		TT

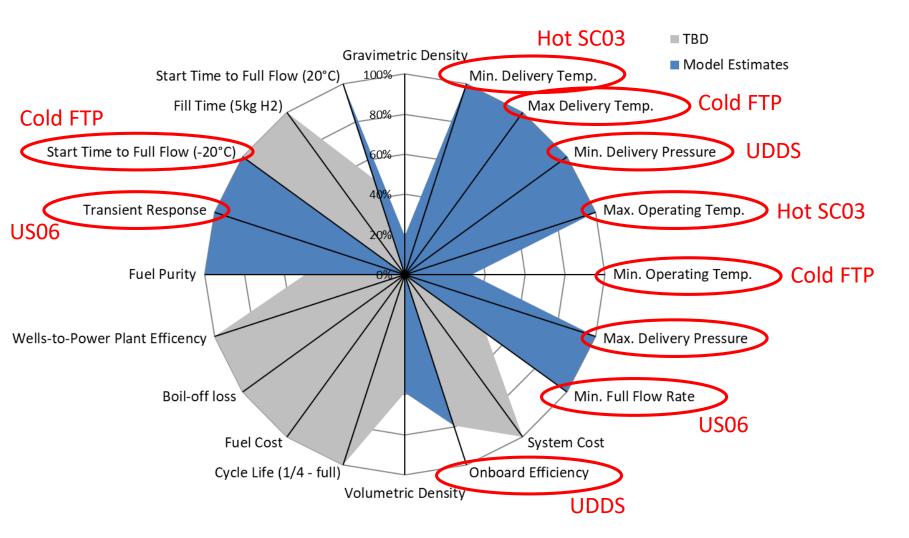
Excel-Based Cryo-Adsorbent Stand-Alone Design Tools

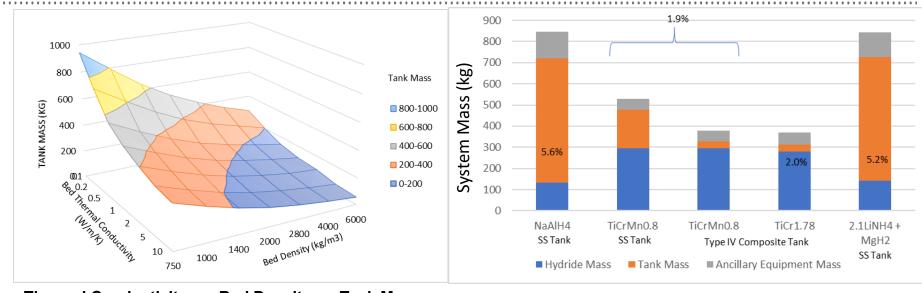

	VOLU	ME		RUN	Clear Results			
	Values	Units	Comments	KON	Results	Description	Name	Units
Pi	1.00E+07 Pa	a	Initial/Full tank pressure	UNILAN	1			Output values
Pf	5.00E+05 Pa	a	Final/Empty tank pressure			Total hydrogen stored	H2stored	kg_H2
Ti	80 K		Initial/Full tank temperature			Usable hydrogen	H2usable	kg_H2
Tf	160 K		Final/Empty tank temperature			Total H2 Storage System Mass	System_mass	kg
ystem_Vol	267.6779 L		Target system total volume			Total Projected H2 Storage System Cost	System_Cost	\$
ype_Ads	2		Type of adsorbent/HX: 1) None (compressed H2)?, 2) Pot	wder/HexCell, 3) Compact/MATI		System-based gravimetric capacity	Grav_Cap	g_H2/g_sys
emp_Op	3		Operating Temperature: 1) Room temperature, 2) Cold Op	peration, 3) Cryogenic Operation		System-based volumetric capacity	Vol_Cap	g_H2/L_sys
Add_Cool	0		Additional Coolant Lines (1) if present			Overall system rank based on mass, volume, and cost (better systems have higher values)"	Rank	
Emax	ال 5040.27	łmol _{H2}	UNILAN Parameter Maximum isosteric heat					Input values
Emin	1061.55 J	łmol _{Hz} łK	UNILAN Parameter Minimum isosteric heat			Initial/Full tank pressure	Pi	bar
nmax	67.75003 m	nol _{ez} /kg _{a.}	UNILAN Parameter Maximum H2 loading per mass of a	adsorbent		Initial/Full tank temperature	Ti	K
Va	0.0014039 m	n³/kg _{ade}	UNILAN Parameter Adsorbed volume per mass of adsorbed	orbent		Final/Empty tank pressure	Pf	bar
Vv	0.00725 m	n³kq _{ade}	UNILAN Parameter Void volume per mass of adsorben	nt		Final/Empty tank temperature	Tf	K
rho ads	130 kg		Bulk Density of the MOF-5			Total H2 Storage System Volume	System_vol	L
k	0.3 \		Thermal conductivity of the adsorbent Outpu		ts	Type of adsorbent/HX: 1) Powder/HexCeII, 2) Compact/MATI	type_Ads	
0	700	11. –112	Consider the state of sections	· -		Operating Temperature: 1) Cryogenic Operation,		
Ср	780 Jł	rkgri.	Specific Heat of the adsorbent			2) Room Temperature Operation	Temp_Op	
ds_Cost	11.8 \$/	lkg _{ad}	Projected cost of the adsorbent per unit mass			Additional coolant (1) present	Add_Cool	
Therm	0		LN2 chiller (1) if present			UNILAN Parameter Maximum isosteric heat	Emax	J/mol_H2
HemObl	0		Hemispherical (1) or oblate (≠1) endcaps			UNILAN Parameter Minimum isosteric heat	Emin	J/mol_H2/K
Vessel	1		Vessel only (0) or full sizing (≠0)			UNILAN Parameter Maximum H2 loading per mass of adsorbent	nmax	mol_H2/kg_ads
ТТуре	4		Type of pressure vessel:			UNILAN Parameter Adsorbed volume per mass of adsorbent	Va	m^3/kg_ads
			1 = Aluminum Type 1			UNILAN Parameter Void volume per mass of adsorbent	Vv	m^3/kg_ads
			2 = 316 Stainless Steel Type 1			Bulk Density of the MOF-5	rho_ads	kg_ads/m^3
			3 = Aluminum + CF Type 3			Thermal conductivity of the adsorbent	k	W/m/K
			4 = SS + CF Type 3			Specific Heat of the adsorbent	Ср	J/kg/K
			5 = Plastic + CF Type 4			Projected cost of the adsorbent per unit mass	Ads_Cost	\$/kg_ads
						Presence of LN2 pre-chiller	Therm	
>	DA_M	1ass	DA_Volume UNILAN_Mass	UNILAN_Volume	Den	sity CompFact Enthalpy	+	: 4

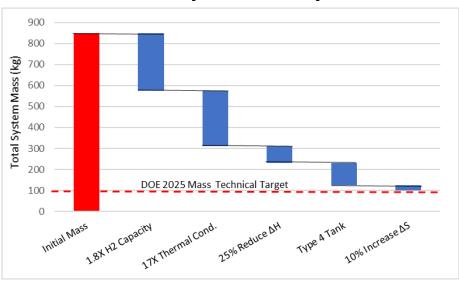
- Separate tabs for Dubinin-Astakhov (D-A) adsorption theory isotherm and UNILAN isotherm
- Models can evaluate mass-of-usable-H₂-constrained and system-volume-constrained design tools
- Can evaluate materials at cryogenic, cold, and room-temperature conditions

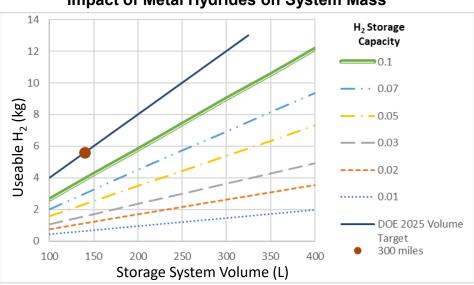

Accomplishments and Progress – Vehicle Framework GUI

Accomplishments and Progress – Adsorbent System


Accomplishments and Progress – Models Provide Input to Spider Charts


Accomplishments and Progress – Models Provide Input to Spider Charts


Information provided by Framework Model using available drive cycles


Accomplishments and Progress – Exercise Models

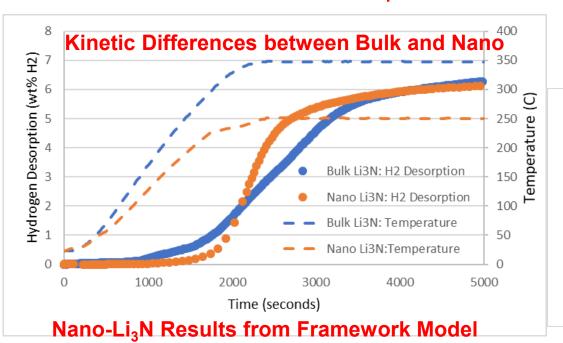
Thermal Conductivity vs. Bed Density on Tank Mass

Impact of Metal Hydrides on System Mass

Approach to Achieving DOE Gravimetric Technical Target

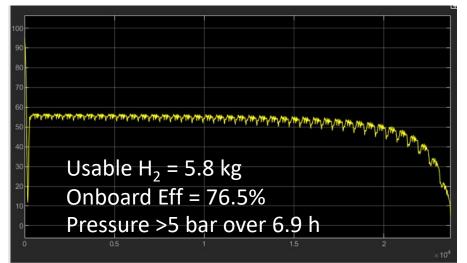
Relationship between Usable H₂ and System Volume

MH Stand-Alone Design Tool Evaluates Promising Materials


Material / Property	Model Input						Model Output						
	hydcap	kbed	rhobed	dH.	dS.	SysMass	SysVol	Temp	TankMass	HydMass	HydBurn	G-Target	V-Target
ENG.Ti-doped NaAlH ₄	0.045	8.96	750	40800	125	612	323	197	400	163	1.77	16.6%	43.2%
TiF ₃ -doped Mg(BH ₄) ₂	0.112	1.43	510	48400	121	566	314	311	415	69.8	2.22	18.0%	44.5%
2LiBH ₄ /MgH ₂	0.097	0.89	550	44200	124	618	348	242	447	78.0	1.97	16.4%	40.1%
Ţi-doped LiBH₄	0.104	0.63	470	73200	120	1297	632	622	1038	93.4	4.11	7.8%	22.1%
KH-doped 2LiNH ₂ -MgH ₂	0.040	2.10	640	39500	119	875	479	216	615	182	1.69	11.6%	29.2%
KH-doped Li₃N	0.082	0.96	710	67300	126	897	448	493	665	112	3.60	11.3%	31.2%
6nm-Mg(BH ₄) ₂ @C	0.059	7.33	570	45800	109	666	354	374	483	130	2.06	↑ 15.3%	39.5%
6nm-LiBH ₄ @C	0.057	7.06	550	57900	106	904	439	581	694	148	2.86	11.3%	31.9%
6nm-Li₃N@C	0.061	8.32	740	42100	114	507	262	283	337	122	1.84	20.1%	53.4%
KH-6nm-Li₃N@C	0.064	9.61	760	41700	117	466	241	256	304	116	1.82	21.9%	58.1%

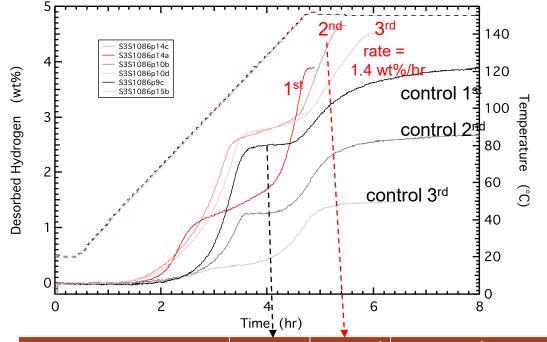
Bulk Materials Nano Materials

Learning: Nanoscale materials have higher system gravimetric and volumetric capacity in spite of lower hydrogen storage capacity


- Improved ΔH and ΔS result in significantly reduced operating temperature, reducing tank mass and hydrogen burned
- Improved thermal conductivity improves heat transfer during refueling and reduces the number of coolant tubes required

Framework Model Compares Nanoscaled vs. Bulk Materials

Fit Data with First Order Reaction $r = -\left(161,154e^{-\frac{79677}{RT}}\right)$ 7.00E+00 6.00E+00 250 5.00E+00 200 4.00E+00 150 3.00E+00 2.00E+00 Temperature 1.00E+00 0.00E+001000 2000 5000 6000 3000


Time, seconds

Learning: Nanoscaled Li₃N has fast enough kinetics and low enough temperatures to allow all drive cycles to be met; bulk Li₃N does not

 Bulk Li₃N reaction does not initiate for any of the drive cycles

MH Stand-Alone Design Tool Compares Two Forms of NaAlH₄

- HRL is evaluating NaAlH₄ milled with 0.03TiCl₃ mixed 50:50 wt % with diglyme.
- This mixture has faster kinetics and reaches complete conversion sooner than the control without diglyme.

	Control	Best 2 nd	Best 2 nd with
			higher k
Useable Hydrogen Capacity	0.04	0.048	0.048
Inert Fraction	0	0.2	0.2
Bed Thermal Conductivity	1	1	2
(W/m/K)			
System mass (kg)	678	680	622
System volume (m3)	0.315	0.317	0.290
Mass H2 Burned (kg)	1.63	1.66	1.66
Tank Outer Diameter (m)	0.475	0.476	0.461
Tank Length (m)	1.83	1.83	1.77
Total Hydride Mass (kg)	181	181	181
Tank Mass (kg)	408	109	272

2nd: Assuming 20% diglyme and the higher usable H₂ capacity result in nearly the same tank size as Control 1st

An assumed doubling of thermal conductivity reduces system mass and volume by 8.5%

Framework Compares Two Forms of NaAlH₄, Maximum T = 160°C

Enhanced material decreases the maximum possible operating temperature with the drive cycles by 5°–10°C

0

0.2

0.4

0.6

0.8

Time (sec)

1.2

1.4

1.6

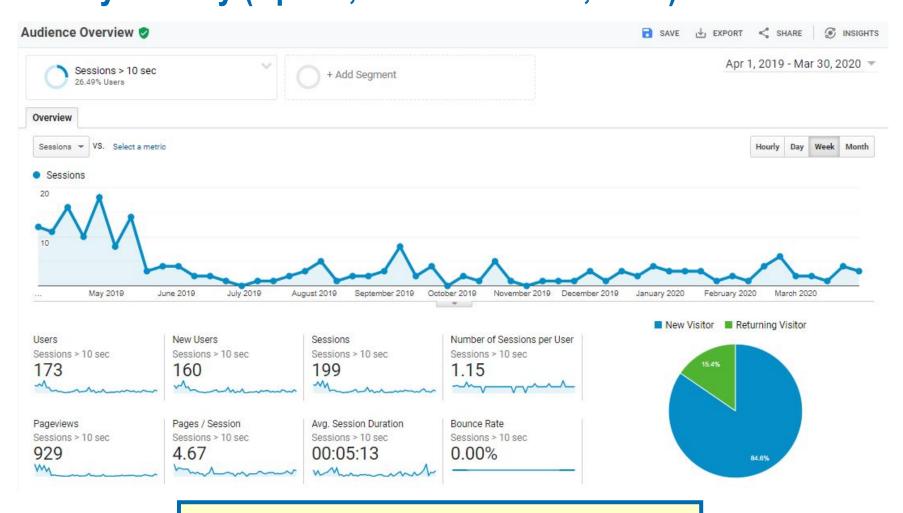
10

2000

4000

6000

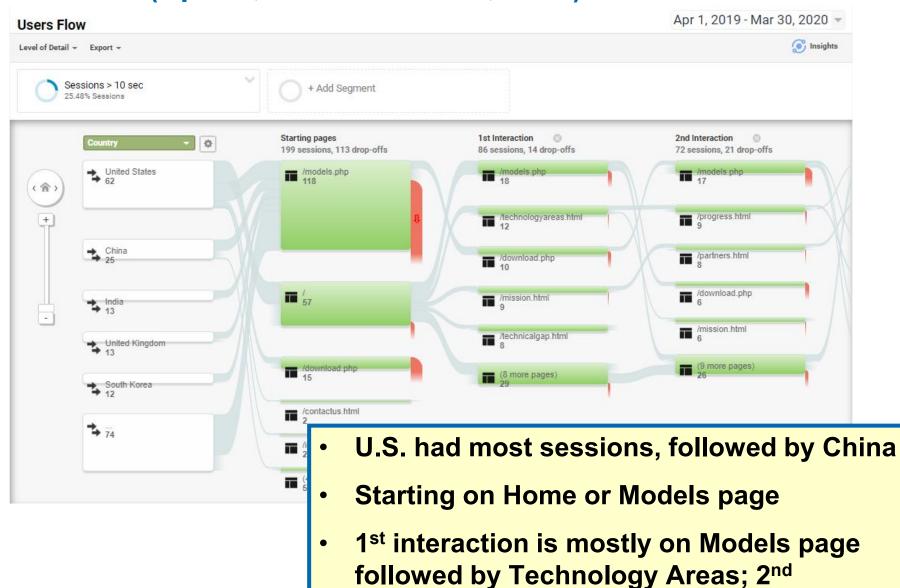
8000


Time (sec)

10000

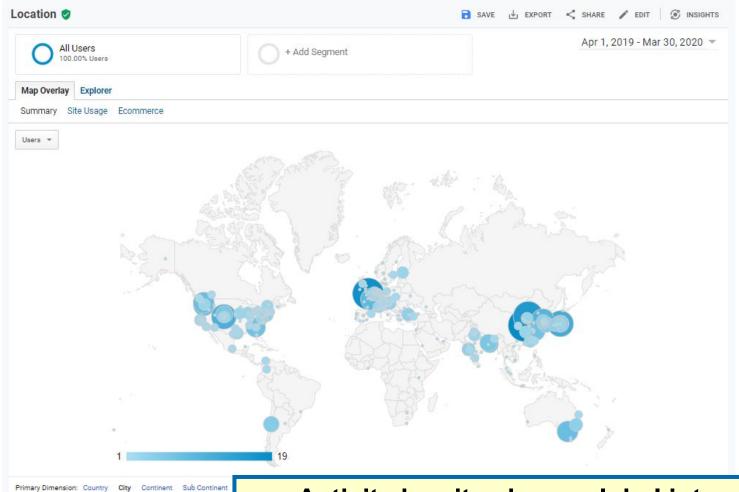
12000

14000


Accomplishments and Progress – Model Website Analytics: Weekly Activity (April 1, 2019–March 30, 2020)

Activity almost every week; 85% of sessions were by new visitors

Accomplishments and Progress – Model Website Analytics:


Web Flow (April 1, 2019–March 30, 2020)

interaction is mostly on Models page

Accomplishments and Progress – Model Website Analytics:

Locations (April 1, 2019–March 30, 2020)

Activity by city shows global interest in countries and regions including China, Australia, Japan, EU, and others

Accomplishments and Progress – Model Downloads (through March 30, 2020)

MODEL	Total	Totals AMR2019	Additional through 2020Q2
H ₂ Storage Tank Mass and Cost Model	268	241	27
MHAE Model	75	66	9
MHFE Model	121	107	14
Vehicle Simulator Framework Model	192	165	27
CH System Design Stand-Alone	44	31	13
Adsorbent System Design Stand-Alone	56	30	26
MH System Design by Usable H ₂	5	-	5
MH System Design by System Volume	4	-	4

Most downloads are for Tank Mass and Cost Model and Vehicle Simulator Model

Collaboration and Coordination

Organization	Relationship	Type	Responsibility
NREL	Team Member	National Lab	Update website and framework
SRNL	Team Member	National Lab	Adsorbent and compressed gas modeling
PNNL	Team Member	National Lab	Chemical hydrogen and metal hydride modeling
Ford	Consultant	Industry	Beta testing, fuel cell model, adsorption data
University of Michigan	Material Developer	Academia	Adsorption data
University of California Berkeley	Material Developer	Academia	Adsorption data
HyMARC Seedling— Liox	Material Developer	National Lab/ Collaboration	Metal hydride data
HyMARC— Sandia	Material Research	National Lab/ Collaboration	Metal hydride data

Proposed Future Work – FY20 Milestones and Next Steps

D	Deliverable					
FY20- Q1	Provide update related to HyMARC collaboration and application of models and post new Framework Model version, including Excel version for all Stand-Alone Models.	Complete				
FY20- Q2	Provide update on web portal activity—website hits and time on site, website use locations, and model downloads.	Complete				
FY20- Q3	SMART Milestone: Update framework storage, fuel cell, and vehicle models to accommodate medium-duty (vocational, class 4–6) and heavy-duty (line-haul, class 8) vehicle platforms in addition to the existing midsize passenger car option. This will also include the modification of the Framework Model test cases to include up to three additional cases based on representative medium- and heavy-duty drive cycles (e.g., heavy-duty UDDS, HHDDT, HTUF-4, NY Comp. or CBD).	6/30/2020				
FY20- Q4	Submit at least two of the following three journal articles: (1) New framework paper—demonstrate models by exercising them using available HyMARC material data, (2) paper related to the sensitivity analysis and develop hierarchy of parameters to adjust to assist material developers, and (3) paper on the tank mass and volume estimator (i.e., Tankinator).	9/30/2020				

Any proposed future work is subject to change based on funding levels

Technology Transfer Activities – Updated HSECoE Model Website

HSECoE website: http://hsecoe.org/

Summary

Relevance	 Provide materials-based hydrogen storage researchers with models and materials requirements to assess their material's performance in an automotive application. 				
Approach	 Improve stand-alone model and framework utility by bridging the gap between the information generated by the materials researcher and the DOE Technical Targets. 				
Technical Accomplishments and Progress	 Stand-alone tools have been developed in Microsoft Excel as a replacement for MATLAB and placed on the modeling website. These models allow easier use by the hydrogen storage community. Stand-alone tools and framework have been used to evaluate materials for HyMARC and help better understand the benefits (or not) of new materials. 				
Collaborations	 Project team includes NREL, SRNL, and PNNL. Consultants from industry participate in team meetings and provide input. Material developers from HyMARC and academia provide new material properties. 				
Proposed Future Research	Expand the use of models by demonstrating their utility with other storage materials and vehicle class options.				

Remaining Challenges and Barriers

- Increase the use of the models by material developers
 - Expand the researcher base that uses the models
 - Simplify the model use for nonmodelers
- Increase the use of the models by systems engineers
 - Potential expansion of the model capabilities to other vehicle classes and system platforms
- Demonstrate the models' utility to other researchers
 - Applying the models to their applications
- Find available data to validate the models
- Reverse engineering—using the models to better inform materials developers of what properties are most important

Publications and Presentations

Brooks, K., D. Tamburello, S. Sprik, M. Thornton. 2018. "Design Tool for Estimating Chemical Hydrogen Storage System Characteristics for Light-Duty Fuel Cell Vehicles." *International Journal of Hydrogen Energy* 43, no. 18 (May): 8846–8858.

Brooks, K., D. Tamburello, S. Sprik, M. Thornton. 2020. "Design Tool for Estimating Metal Hydride Storage System Characteristics for Light-Duty Fuel Cell Vehicles." *International Journal of Hydrogen Energy*, forthcoming (submitted January 2020).

Tamburello, D. 2018. "Cryo-Adsorbent Hydrogen Storage Systems for Fuel Cell Vehicles" (presented at the 70th Southeastern Regional Meeting of the American Chemical Society, Augusta, GA, November 2, 2018).

Tamburello, D., B. Hardy, M. Sulic, M. Kesterson, C. Corgnale, D. Anton. 2018. "Compact Cryo-Adsorbent Hydrogen Storage Systems for Fuel Cell Vehicles" (POWER2018-7474, Proceedings of the ASME Power and Energy Conference, Buena Vista, FL, June 24, 2018).

Responses to Previous Year Reviewers' Comments

This project was not reviewed last year