Development of Magnesium Boride Etherates as Hydrogen Storage Materials

Dr. G. Severa (PI) and Prof. C. M. Jensen (Co-PI)

University of Hawaii at Manoa

DOE Hydrogen and Fuel Cells Program Annual Merit Review

May 19–21, 2020

Project ID # ST138

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 10/01/2016
- Project End Date: 09/30/2020
- Percent Completion: 60 %

Barriers

Barrier	Target
Low System Gravimetric capacity	> 5.5 wt% H ₂ system
Low System volumetric capacity	> 30 g/L system
Low System fill times	1.9 kg hydrogen/min

Budget

- Total Project Budget: \$1,204,366
 - ➢ Total Recipient Share : \$ 214,436
 - ➢ Total Federal Share : \$989,930
 - Total DOE Funds Spent: \$772,936.42
 as of 03/31/20

Partners

- HyMARC Consortium
 - > **SNL**: High Pressure Hydrogenations.
 - > LLNL: Computation and XAS studies.
 - > **NREL:** TPD and EPR Studies.

Relevance

Objective: Synthesize and Characterize Modified Magnesium Boride Hydrogen Storage Materials Capable of Meeting DOE Targets.

Storage Parameter	Units	2020 Targets	2025 Targets	Ultimate Target
Low System Gravimetric capacity	kg H ₂ /kg system	0.045	0.055	0.065
Low System volumetric capacity	kg H ₂ /L system	0.030	0.040	0.050
Low System fill times (5.6 kg)	kg H ₂ /min	3	3	3
Min Delivery Pressure	bar	5	5	5
Operational cycle (1/4 tank to full)	cycles	1500	1500	1500

DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles. <u>https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles</u>

Relevance: Recent Advances in Mg(BH₄)₂ Research

• Recent improvements in magnesium borohydride research.

	Hydrogenation		Dehydrogenation		Wt % H ₂		
Dehydrogenation Product	Temp. (°C)	P (bar)	time (h)	Temp. (°C)	time (h)	Theory	Exp.
MgB_2 (HP)	>400	>900	108	530	20	14.8	11.4
MgB ₂ (reactive ball milling/HT-HP)	400	10/400	10/24	390	-	14.8	4
$Mg(B_3H_8)_2/2MgH_2$	250	120	48	250	120	2.7	2.1
$Mg(B_{10}H_{10})_2(THF)_x/4MgH_2$	200	50	2	200	12	4.9	3.8

Mg(BH₄)₂ ammoniates ➤Improved kinetics on dehydrogenation even though, NH₃, very stable BN products formed. $Mg(BH_4)_2$ and $MgB_xH_y(ether)_z$

- Improved H₂ cycling kinetics on ether coordination,.
- \blacktriangleright lower H₂ storage capacity.

Current state-of-the-art:

- > Better H_2 cycling kinetics (lower pressures and temperatures).
- **Lower gravimetric H**₂ storage capacity.

Efforts show plausibility of continuously enhancing kinetics of Mg(BH₄)₂ system.

G. Severa, E. Rönnebro, C.M.Jensen; *Chem. Commun.* 2010, *46*, 421. M. Chong, M. Matsuo, S. Orimo, C.M. Jensen Iinorg. Chem. 2015, *54*, 4120.; Grigorii Soloveichik, Jae-Hyuk Her, Peter W. Stephens, Yan Gao, Job Rijssenbeek, Matt Andrus, and J.-C. Zhao, Inorg. Chem. 2008, 47, 4290-4298

Relevance: Potential for Practical Hydrogen Storage Properties using modified MgB₂

<u>Hypotheses</u>: Coordination or incorporation of additives/modifiers can perturb the MgB_2 structure resulting in a destabilized MgB_2 material with improved hydrogen storage properties.

Towards improving hydrogen storage properties of MgB₂/Mg(BH₄)₂ system.

Approach: Synthesize, Characterize and Hydrogenate Modified MgB₂ Materials

Experimental Approach: Period 3

- A. Synthesis of modified MgB_2 materials: Direct reactions of MgB_2 with additives and dehydrogenation of $Mg(BH_4)_2$ in presence of additives. Emphases on ball milling and heat treatment approaches.
- **B. Hydrogenation reactions:** <u>UH</u>: \leq 200 bars, \leq 300 °C. <u>HyMARC-SNL</u>: \leq 400 bars and \leq 300 °C.
- **D. Computation Experiments:** <u>HyMARC-LLNL:</u> Ab *initio* Molecular Dynamic Simulations.

C. Characterizations: TGA, DSC, FT-IR, NMR, <u>HyMARC-PNNL: XRD, HyMARC-NREL:</u> TPD/EPR

Milestone	Project Milestones: (10/01/2019 - 09/31/2020)	Quarter	Accomplished (05/28/2020)
1	Establish a correlation of the extent of MgB_2 modification to hydrogen uptake.	1	70%
2	Determine the minimal additives content required to enhance bulk MgB ₂ hydrogenation below 200 bar and 300 °C.	2	70%
3	Demonstrate hydrogen cycling by a modified MgB_2 to $Mg(BH_4)_2$.	4	30%
4	Determination of hydrogen cycling conditions for modified MgB_2 to achieve maximum H_2 storage capacity with acceptable kinetics.	4	10%

Period 3 Deliverable: Demonstrate reversible hydrogenation of ≥ 8.0 wt % at ≤ 300 bar and ≤ 250 °C and cycling stability through 5 cycles of an optimal formulation of a modified MgB₂ to Mg(BH₄)₂.

Accomplishments: First hydrogen cycle of modified MgB₂ 400 bar H₂ and 300 °C

Cycling study of "MgB₂ + 10mol% Mg-10mol% graphene"

Preliminary studies indicate minute re-hydrogenation of a modified MgB₂ material.

Accomplishments: Optimization of a modified MgB₂ graphene material for improved H₂ uptake 400 bar H₂ and 300 °C

MgB₂ + 10 mol% graphene

Ball milling optimization

Modified MgB₂

Rate: 5 °C/min under Argon flow

Improved mass loss observed from an optimized modified MgB₂ material hydrogenated at 400 bar and 300 °C.

Accomplishments: TPD Analyses of the modified MgB₂ 400 bar H₂ and 300 °C

Confirmation of hydrogen evolution from the hydrogenated modified MgB₂

TPD analyses of hydrogen evolution from a MgB₂ -10 mol% graphene nanoplatelets sample before (PRE) and after (POST) hydrogenation at 400 bar and 300 °C.

Accomplishments: TPD Analyses of the modified MgB₂ 400 bar H₂ and 300 °C

Evolved gaseous products from the modified MgB₂ materials

The water impurity is attributed to residual physisorbed H_2O inside the TPD sample vial.

Only trace amounts of graphene or its decomposition products detected.

Accomplishments: ¹¹B Solid State NMR of the optimized MgB₂-graphene material

400 bar H₂ and 300 °C

NMR indicates almost complete conversion of the MgB₂ to Mg(BH₄)₂

Minimum impurities of boron species observed in NMR spectrum

Accomplishments: XRD of the optimized MgB₂-graphene material

400 bar H_2 and 300 °C

XRD analyses of crystalline phases of boride, borohydride and impurities.

MgB₂ and WC detected in pre-hydrogenated sample.

• WC originates from the ware of grinding balls during milling process.

XRD taken in Dera Lab (UH) using single-crystal diffractometer with IuS 3.0 Ag K_{\alpha} microfocus source.

Large decrease of crystalline phase of MgB₂ observed in hydrogenated material.

• Sharp new diffraction peak is attributed to $Mg(BH_4)_2$ main reflection.

Presence of WC responsible for the unexpected lower wt% H_2 release observed from TPD and TGA analyses.

Accomplishments: Preliminary studies of modified MgB₂ materials under moderate conditions

160 bar H₂ and 250 °C

Further optimization of modified MgB₂ materials required to ensure lower temperature and pressure hydrogen uptake.

Accomplishments: Preliminary studies of modified MgB₂ materials under moderate conditions 160 bar H₂ and 250 °C

 $\begin{array}{ll} MgB_2 + \leq 10 \text{ mol}\% \text{ X} + H_2 & \xrightarrow{160 \text{ bar}} \\ X = \text{graphene, Mg, THF} \\ \text{and/or anthracene} \end{array} \qquad Magnesium borohydride \\ \end{array}$

¹¹B Solid State NMR analyses of hydrogenated modified MgB₂ materials.

Direct confirmation of $Mg(BH_4)_2$ formation at lower pressures and temperatures

Accomplishments: Responses to 2019 Reviewers' Comments

This project was not reviewed last year.

Remaining Challenges and Barriers

- Increasing hydrogen uptake to ≥ 8 wt% at ≤ 300 bar and ≤ 250 °C.
- Showing significant H_2 cycling of a modified MgB_2 to $Mg(BH_4)_2$.
 - Minimize irreversible side products formation during (de)hydrogenation.
- Understanding the process of modifier activation of MgB_2 that enables lower temperature and pressure hydrogenation to $Mg(BH_4)_2$.
- Determining the lower temperature and pressure limits of modifier effects on MgB_2 hydrogenation.

Collaborations

Partners	Project Roles
Sandia National Laboratories (HyMARC)	Collaborating with Dr. Stavila, Dr. Snider, Mr. Davis:➢ High pressure hydrogenations.
Lawrence Livermore National Laboratory (HyMARC)	 Collaborating with Dr. Wood, Dr. Kang, Dr. Baker: ➢ Molecular dynamic simulations of modified magnesium borides ➢ XAS studies of modified MgB₂.
National Renewable Energy Laboratory (HyMARC)	 Collaborating with Dr. Gennett and Dr. Leick: Temperature programmed desorptions. Mass spec analyses of desorbed gas. EPR studies of modified MgB₂ materials
Pacific Northwest National Laboratory (HyMARC)	Collaborating with Dr. Bowden ➤ XRD studies of modified materials

Continue to maximize HyMARC facilities and expertise to achieve project goals.

Proposed Future Work

Synthesis

UH: HNEI and Dept. of Chemistry. Optimize syntheses of modified MgB_2 materials using ball milling and heat treatment approaches. Emphases on heat treatment approaches for better control of syntheses conditions and products.

Hydrogenations

- Perform hydrogenations of modified MgB₂ at \leq 200 bar and \leq 300 °C at UH.
- Perform hydrogen cycling studies at \leq 400 bar and \leq 300 °C at SNL and UH.

Characterizations

• UH: ¹¹B NMR, FTIR-ATR, TGA, DSC.

• HYMARC:

- <u>NREL</u>: TPD and EPR.
- <u>LLNL</u>: XAS
- PNNL: XRD

Any proposed future work is subject to change based on funding levels

Acknowledgements

University of Hawaii Team Hawaii Natural Energy Institute

> Dr. Godwin Severa Dr. Lei Wang Ms. Colleen Kelly Dept. of Chemistry Mr. Stephen Kim Prof. C.M. Jensen

Collaborators	Contribution
Lawrence Livermore National Laboratory	 Dr. Wood, Dr. Kang and Dr Baker: Molecular dynamic simulations XAS studies
Sandia National Laboratories	Dr. Stavila, Dr. Snider, Mr. Davis:➢ High pressure hydrogenations.
National Renewable Energy Laboratory	 Dr. Gennett, Dr. Leick and Ms. Martinez: Temperature programmed desorption. EPR studies
Pacific Northwest National Laboratory	Dr. BowdenXRD studies of modified materials

Project Funding: US. DOE-EERE's Fuel Cell Technologies Office

Summary

- Demonstrated improved hydrogenation of a modified MgB_2 to $Mg(BH_4)_2$ at 300 °C and 400 bar.
 - TPD analyses indicates about 5wt% H₂ release from the MgB₂-10 mol% graphene material.
- Demonstrated hydrogenation of MgB_2 to $Mg(BH_4)_2$ at 250 °C and 160 bar.
 - TGA analyses indicates about 1wt% mass loss from the modified MgB₂ materials, suggesting surface hydrogenation.
- Further improvements to the hydrogenation of MgB₂ to Mg(BH₄)₂ at conditions relevant for onboard hydrogen storage appear plausible (≤ 160 bar and ≤ 250 °C).

Bulk MgB ₂ Hydrogenation	State of Art [Pure MgB ₂]	Period 1 [modified MgB ₂]	Period 2 [modified MgB ₂]	Period 3 [modified MgB ₂]	Period 3 [modified MgB ₂]
Pressure/ bar	950	700	400	400	160
Temperature/ °C	~400	300	300	300	250
Wt % hydrogen	11 wt % (Sieverts)	7-8 wt % (TPD)		4-6 wt% (TPD)	~1 wt% (TGA)
% Conversion: MgB ₂ to Mg(BH ₄) ₂	75 % [Sieverts method: wt% H ₂]	71 % [¹¹ B solid state NMR line fitting method]	46 % [¹¹ B solid state NMR line fitting method]	85 % [¹¹ B solid state NMR line fitting method]	

Research shows plausibility of continuous improvements in kinetics of MgB₂ hydrogenation to Mg(BH₄)₂, to fuel cell relevant conditions.