

Developing A New Polyolefin Precursor for Low-Cost, High-Strength Carbon Fiber

Project ID: ST147

PI: Mike Chung

Department of Materials Science and Engineering The Pennsylvania State University University Park, PA 16802

> 2020 DOE Hydrogen Program Annual Merit Review May 19-21, 2020

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 9/1/2017
- Project end date: 8/31/2020
- % complete: 80%

Budget

- Total project funding: \$931,643
- DOE share: \$804,462
- Penn State share: \$127,181
- Funding for FY2019-20: \$308,492
- 1st Go/no-Go decision: Pass in September 2018
- 2nd Go/no-Go decision: Pass in October 2019

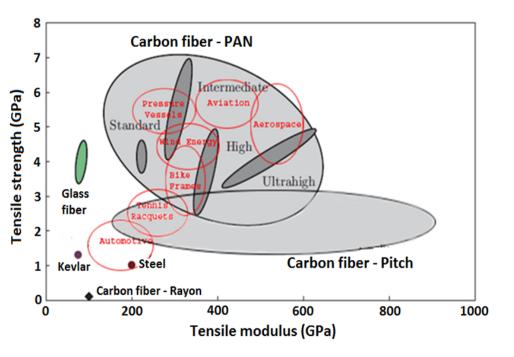
Barriers

- System weight & volume
- System cost, efficiency, durability
- Charging/discharging rates
- Suitable H₂ binding energy
- High polymer surface area

Partners

- LightMat consortium
- Oak Ridge National Lab.

Relevance: DOE cost targets


5 gallon tank with 700 bars pressure 5 Kg H_2 storage for 300 miles driving range (45-60 miles/Kg H_2) High Cost (~ \$3,000 per vehicle) Composite overwrapped pressure vessel for 5.6 Kg usable hydrogen

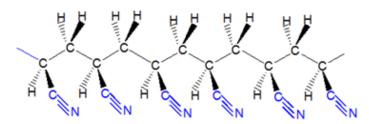
	Energy cost (\$/kWh)	System cost (\$/vehicle)
2013 system	\$17	\$3,200
2015 system	\$15	\$2,800
DOE Target	\$10	\$1,900

Type IV COPV system with polymer liner and annual production rate of 500,000 systems

DOE 2015 cost analysis indicated that 62% of the system cost would come from the cost of carbon fiber (CF)

Relevance: Tensile Properties

PAN precursor


Advantages:

Applied tension during the conversion Low defects, Good alignment, High strength

Disadvantages:

High cost, Wet-spinning, Low C yield (50%)

PAN Polymer

Pitch from petroleum or coal tar (PAH mixture with Mw. 200-800 g/mole)

Benzo(b)fluorene m/z = 216.4

m/z =244.5

Chrysen m/z =228.3

Benzo(e)pyren

m/z =252 3

m/z = 278.3

Benz[e]acephenanthrylene m/z =252.3

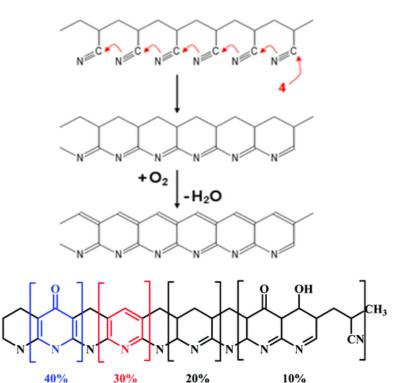
Benzo(c)chrysene

Pitch precursor

Advantages of Pitch precursor:

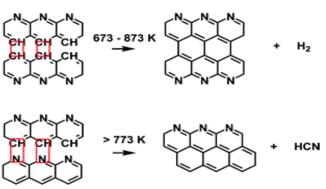
Low cost, melt-spinning, high C yield (up to 80%)

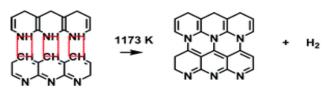
Disadvantages:

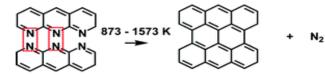

No applied tension during the conversion High defects, Poor alignment, Low strength

How to design a precursor with the combined advantages?

Relevance: PAN thermal conversion

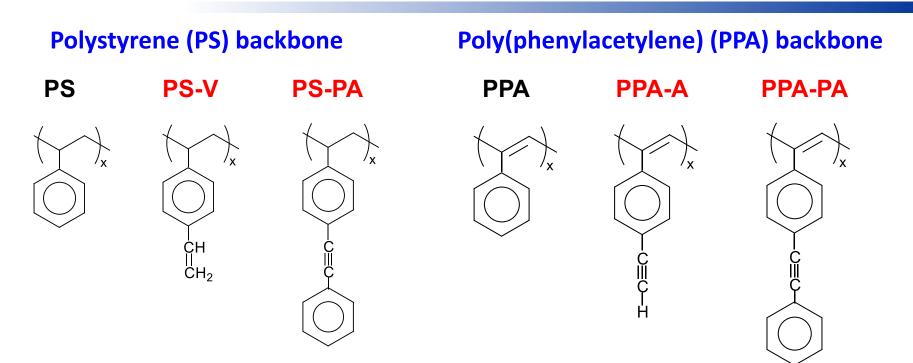

Stabilization

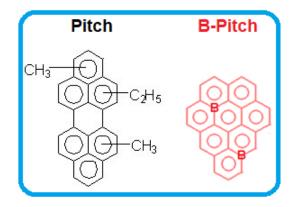

(200-300 °C in Air)



Carbonization

(1000-2000 °C under N₂)

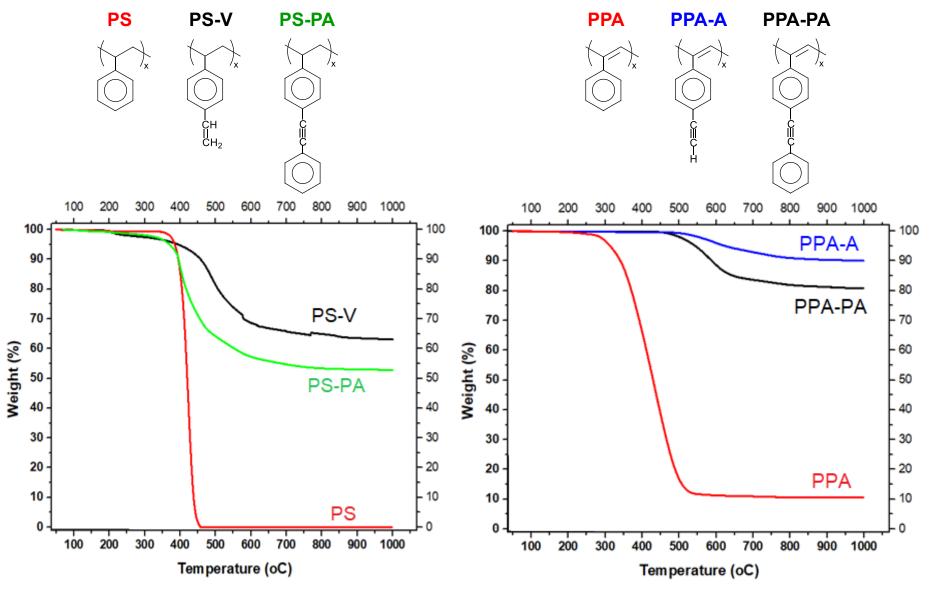


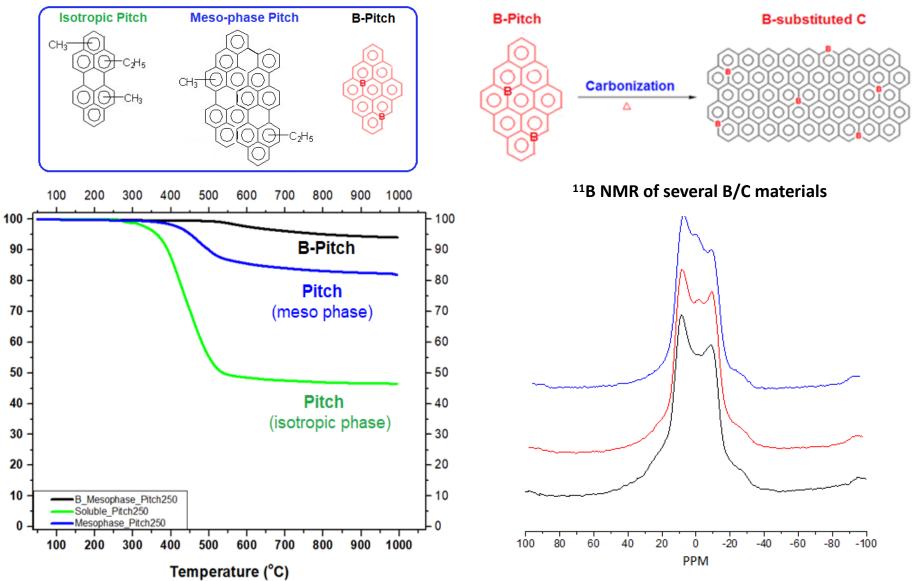

(Conjugation, Dehydrogenation, Crosslinking)

(Hetroatom Removal and Ring-fusion)

PAN offers low C-yield ~50%, due to the combination of inhomogeneous stabilization in core area and drive-off N, O, and H heteroatoms.

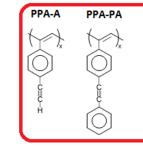
Approach: Design hydrocarbon polymers (i) high C-yield and (ii) one-step conversion under N₂



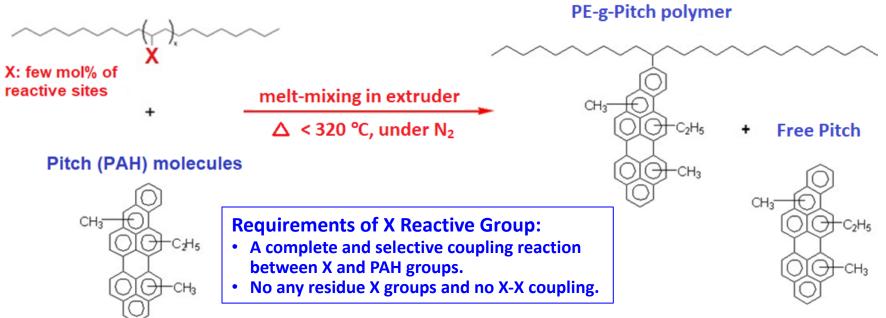

Thermal-induced stabilization reactions without O₂:

- Dehydrogenation reaction
- π-Electrons conjugation
- Crosslinking reaction

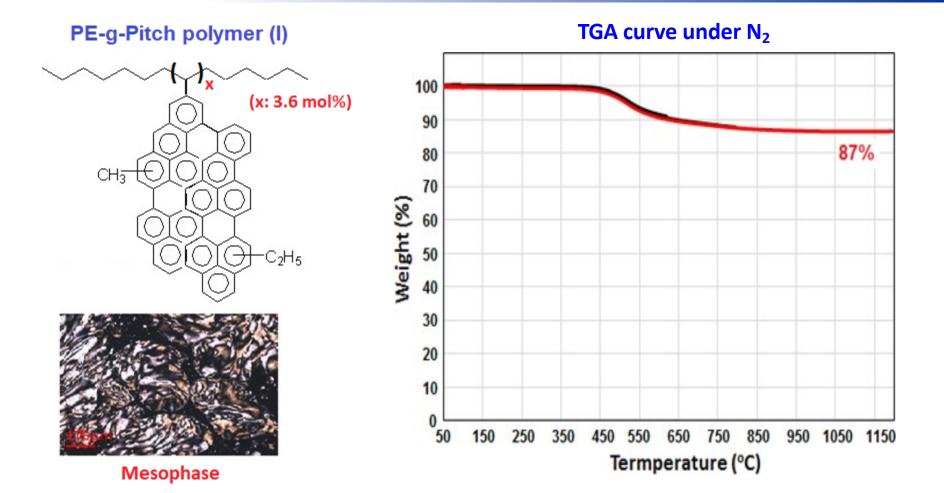
Accomplishments: C-yields of polymer structures (one-step thermal conversion under N₂)



Accomplishments: C-yields of pitch structures (PAH) (one-step thermal conversion under N₂)

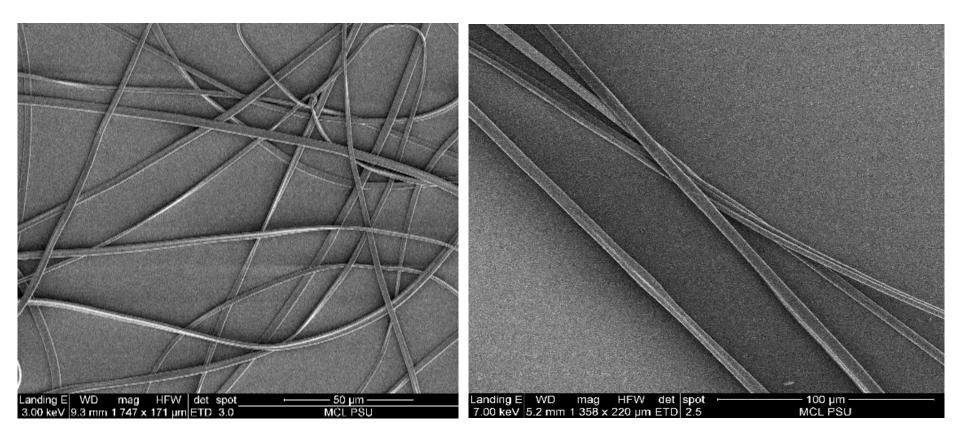

Weight (%)

Approach: Design new PE-g-Pitch precursors with (i) high C-yield under N_{2} , (ii) melt processible, and (iii) low-cost

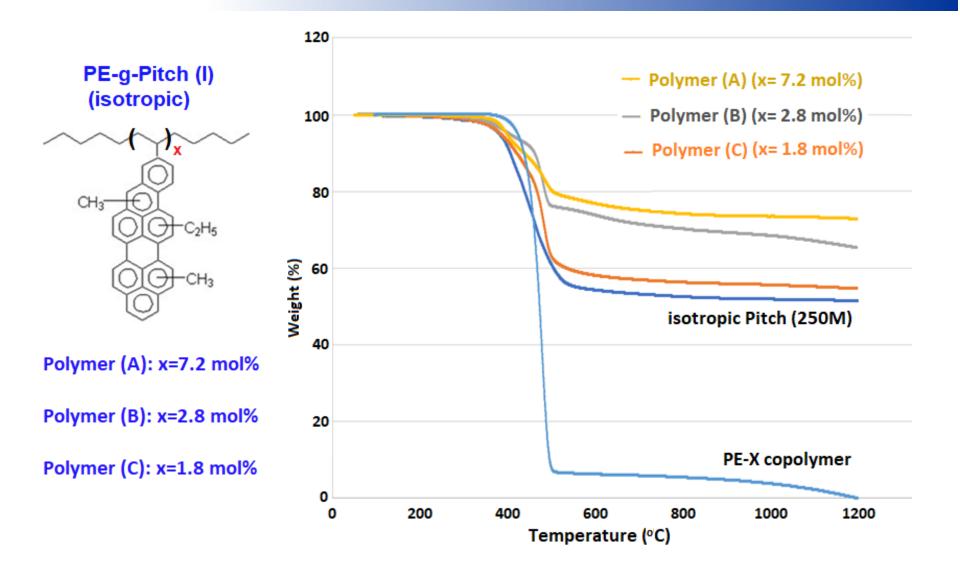

Both PPA-A and PPA-PA precursor polymers with high C-yields are solution-processible, but not melt-processible. They start the stabilization reactions before their softing temperature. They are also not low-cost precursors.

Reactive PE copolymer

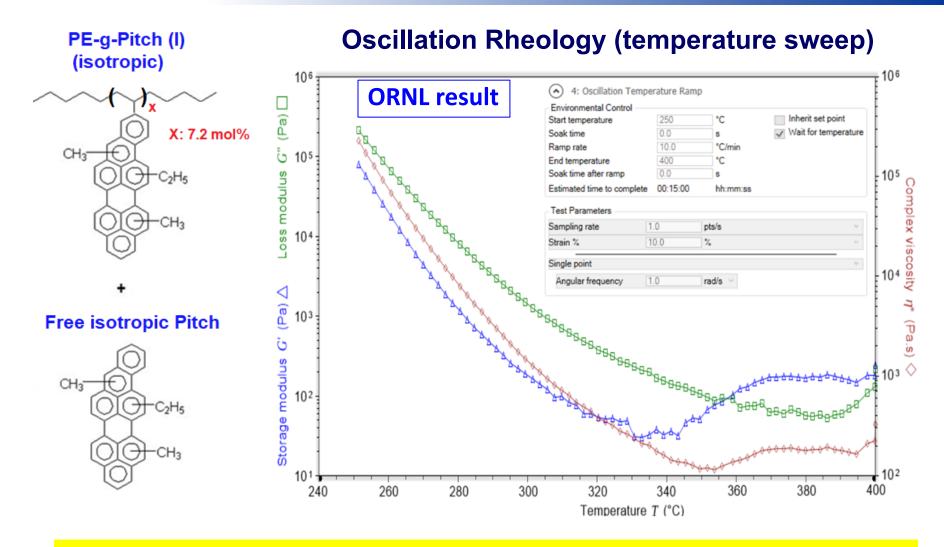
PE-g-Pitch shall be stable and melt-processible at <350 °C (Pitch reaction temperature)


Accomplishment: PE-g-Pitch (I) (mesophase precursor)

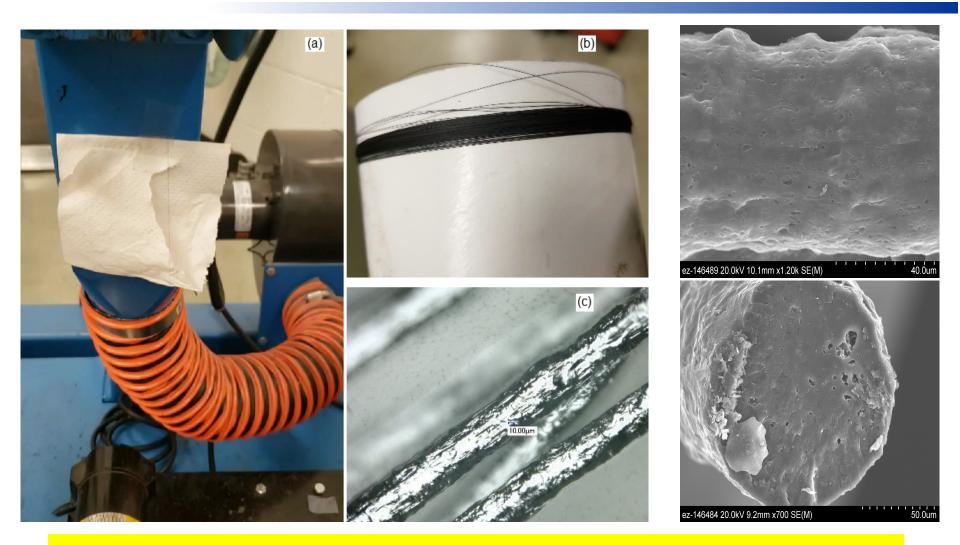
One step C conversion under N₂ atmosphere with high C-yield (87%)


The resulting mesophase PE-g-Pitch precursor shows high melt-viscosity

Accomplishments: SEM micrographs of electrospun Mesophase PE-g-Pitch (I) fibers


Dry-spinning from 30 wt% polymer solution in toluene solvent

Accomplishments: PE-g-Pitch (I) (isotropic Pitch)


All PE-g-Pitch (I) precursors show higher C yield than both PE-X and Pitch.

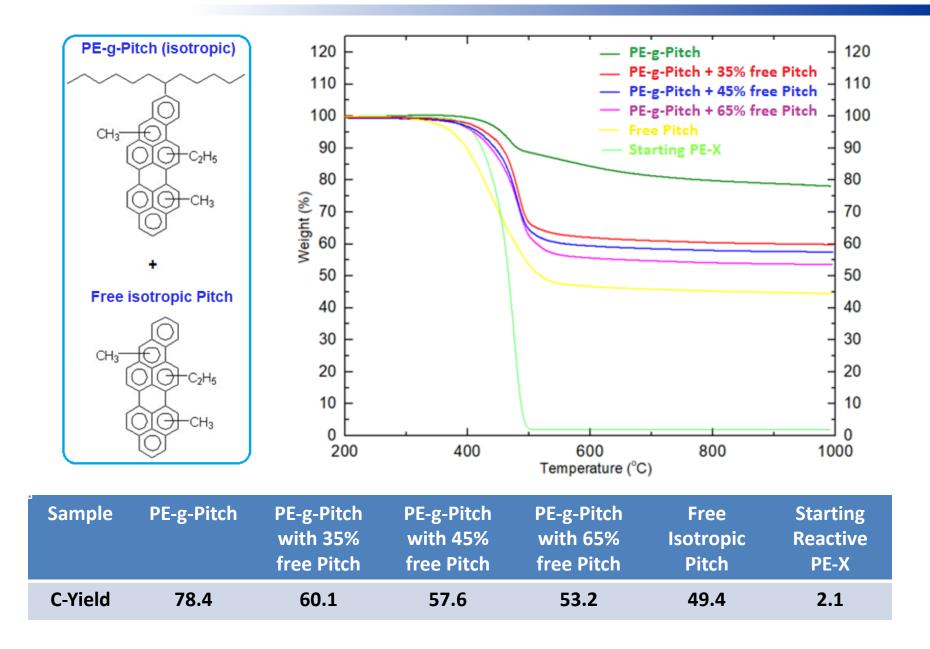
Accomplishments: Melt-processible PE-g-Pitch (I)/Pitch

- The suitable melt-processing temperature <330 °C
- This PE-g-Pitch (I) precursor was scaled up to >100g for the melt-spinning at ORNL

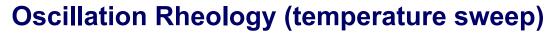
Accomplishments: Melt-spun PE-g-Pitch fibers at ORNL

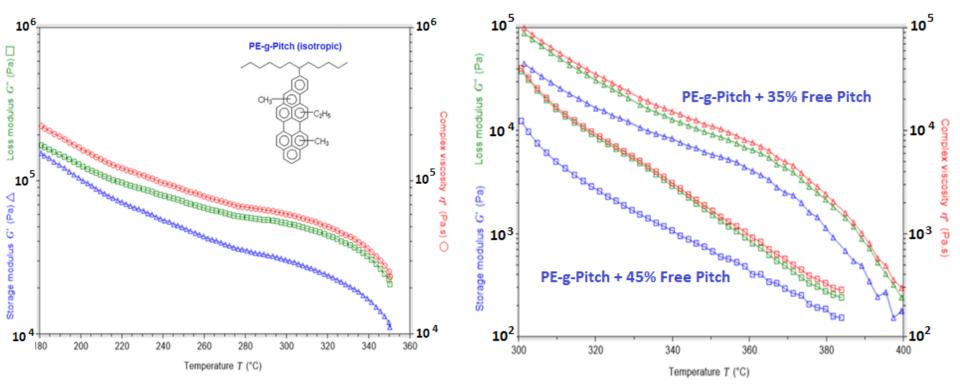
 PE-g-Pitch precursor was spun continuously using ORNL laboratory-scale single-filament spinning apparatus in the temp. range of 320-360 °C.

• The fiber shows somewhat uneven surfaces and many small voids.


Accomplishments: PE-g-Pitch (I) precursor

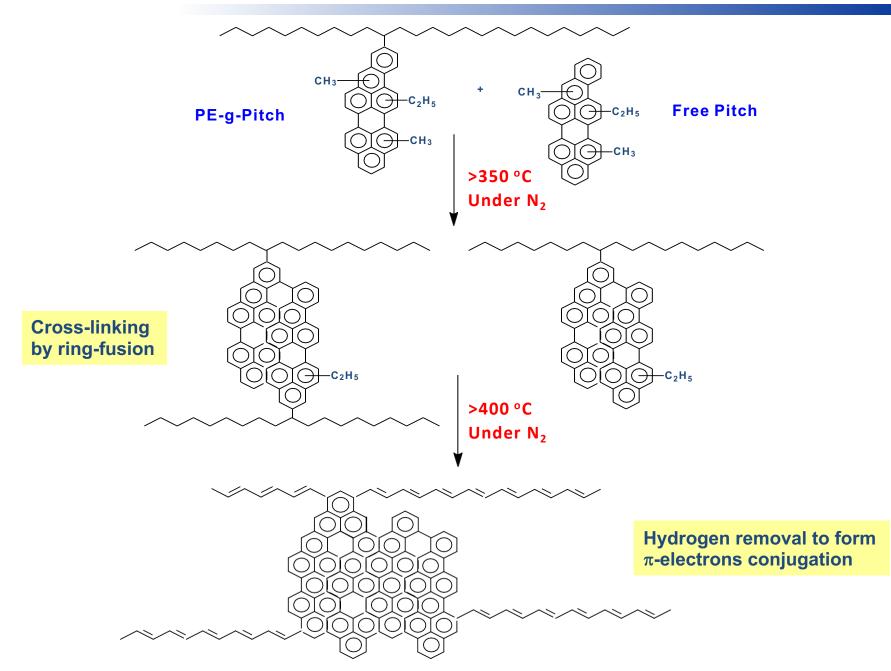
- PE-g-Pitch (I) polymer (with meso-phase pitch) shows >85% C-yield and uniform fibers by solution-spinning, but not melt-processible.
- PE-g-Pitch (I) polymer (with isotropic pitch) shows >70% C-yield and is melt-processible with some free Pitch (Plasticizer). However, it is difficult to prepare uniform fiber due to instability of polymer at >330 °C (melt-processing temp.).




Require the PE-X copolymer with reactive X groups that can achieve completely and selectively coupling reaction with PAH molecules. (No residue X groups and no X-X coupling reaction)

Accomplishments: New PE-g-Pitch precursor (II)

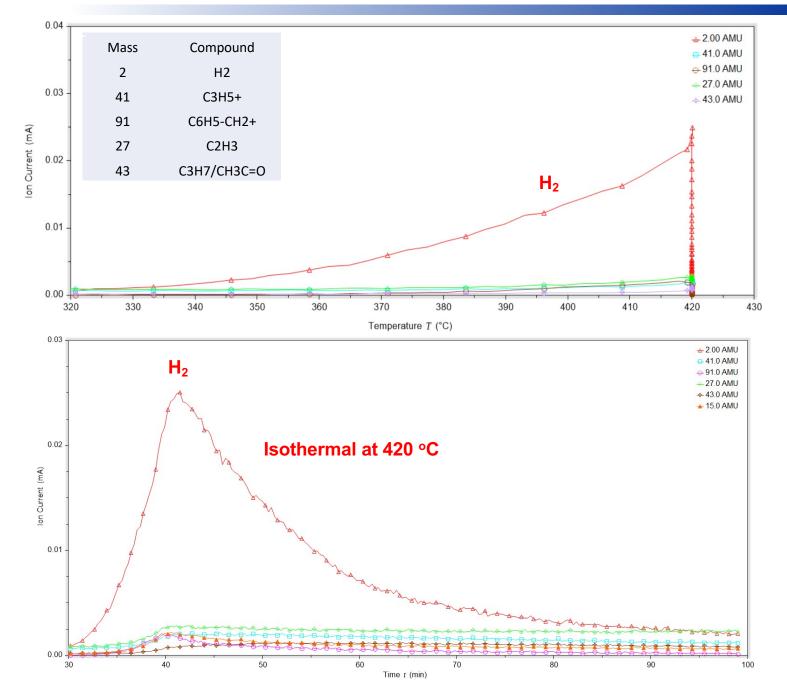
Accomplishments: Melt-processible PE-g-Pitch precursor (II)



Sample	C-Yield
PE-g-Pitch	78.4
PE-g-Pitch + 35% Pitch	60.1
PE-g-Pitch + 45% Pitch	57.6

The most suitable precursor composition: PE-g-Pitch with 45% free Pitch. The most suitable melt-spinning temp: 320-340 °C.

Accomplishment: Stabilization Mechanism of PE-g-Pitch Precursor



Accomplishments: ¹³C NMR and XRD spectra of PE-g-Pitch fiber during thermal conversion to CFs under N₂

PE polymer chain is conversed to aromatic structure at 400-440 °C under N₂

Accomplishment: TGA-Mass Results during Stabilization

20

Accomplishments: XRD comparison of Carbon Fibers

⁰_

TPT, °C

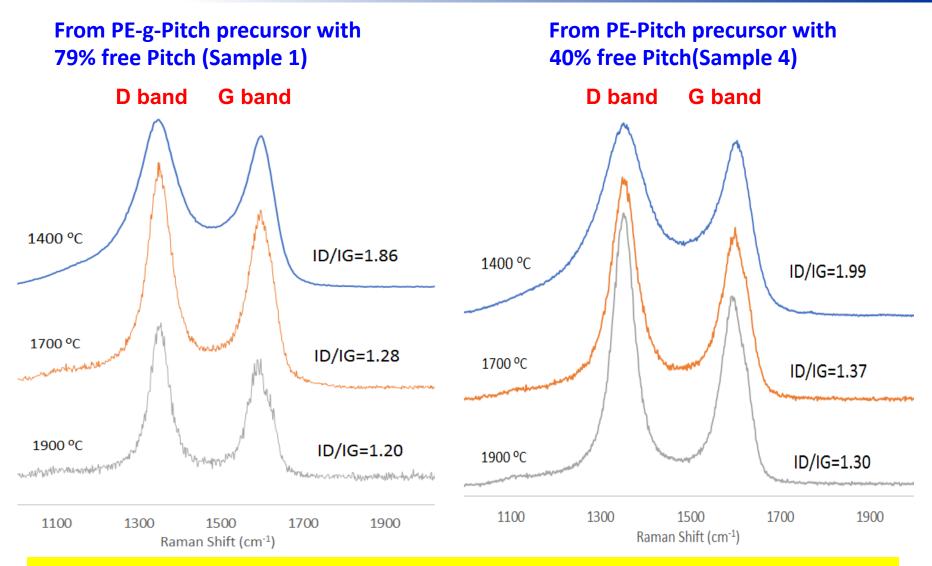
	PE-g-Pitch ba	ased Carbo	PAN-based Carbon Fibers*		
Temperature (°C)	D ₀₀₂ interlayer spacing (nm)	Lc (nm)	La (nm)	D ₀₀₂ interlayer spacing (nm)	Lc (nm)
1500 (Sample 1)	0.3674	1.5774	5.1327	0.361	2.0
1700 (Sample 1)	0.3500	2.5778	6.2958	0.357	2.5
1900 (Sample 1)	0.3480	3.2731	7.4849	0.351	3.1
1400 (Sample 4)	0.3708	1.2968	4.6150	0.364	2.0
1700 (Sample 4)	0.3549	1.6697	5.9562	0.357	2.5
1900 (Sample 4)	0.3524	3.9405	6.9944	0.351	3.1
σ, GPa 5 4	<i>d</i> ₀₀₂ , nm 0.360 0.355 0.350 0.345	• • • • • •	•	L_c , nm 10 8 6 4	

* Inorganic Materials: Applied Research **2018**, 9, 890-899

C

000

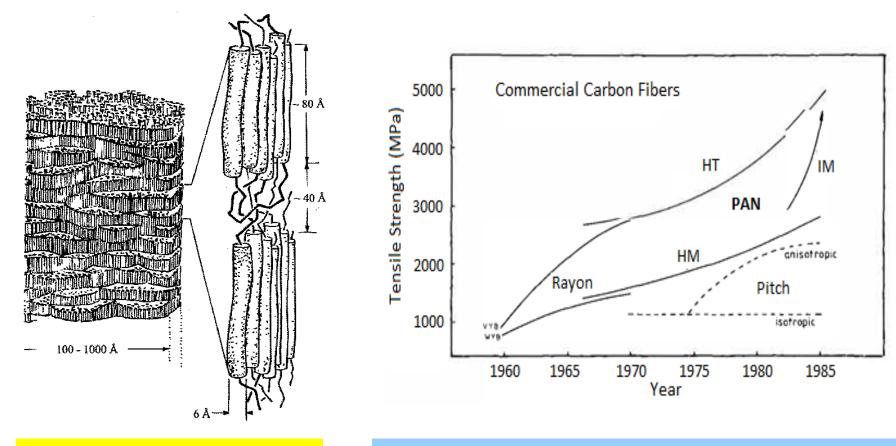
TPT, °C


TPT, °C

0.340

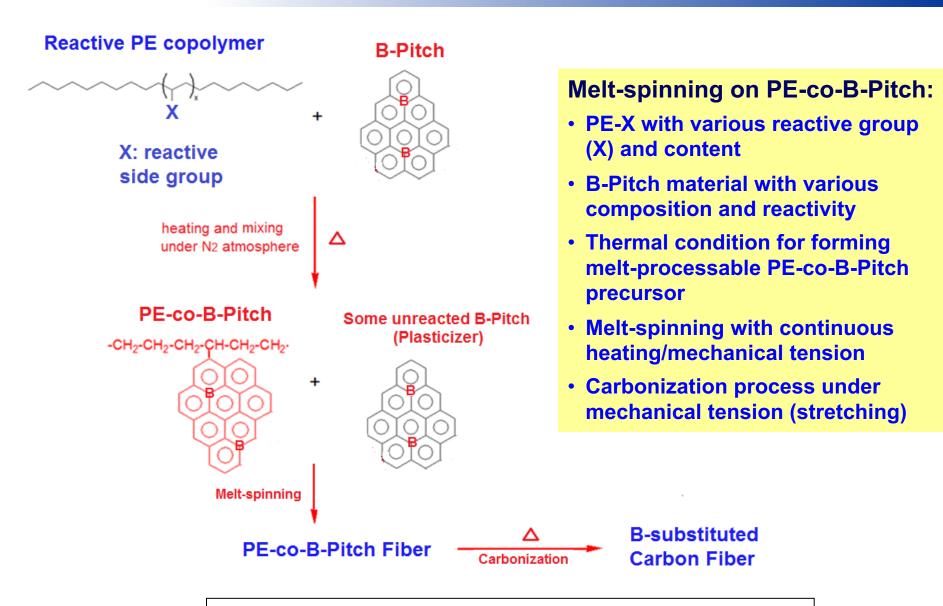
0.335

Accomplishment: Raman Spectra of Resulting Carbon Fibers


(carbonization at 1400, 1700, 1900 °C for 1h under N₂)

The integrated intensity ratio ($R=I_D/I_G$) for PAN-based carbon fibers is about 1

-	Milestones and Deliverables Summary Table						
		T. C. Mike Chu					
	Project Title:			n Precursor for Low-Cost, High-Stre		Anticipated	Anticipated
Task	Task or	Milestone, Go/No-Go	Milestone Number	Milestone Description	Milestone Verification	Anticipated Date	Anticipated Quarter
Number	Subtask (if applicable) Title	Decision	Humber	(Go/No-Go Decision Criteria)	Process	(Months)	(Quarters)
1	Synthesis of Diene Monomers	Milestone	M1.0	Synthesis route and two diene monomers by ¹ H and ¹³ C NMR spectra	¹ H and ¹³ C NMR spectra of the resulting monomers.	1-2	1
	Suptosis of DE Conclumors with DVR and			Confirm two resulting polymer	CPC survey and 14 NMP spectra of two		
2.1	Synthesis of PE Copolymers with DVB and BSt units	Milestone	M2.1	structures by GPC curves and ¹ H NMR spectra	GPC curves and ¹ H NMR spectra of two polymers.	3-6	1-2
2.2	Synthesis of Poly(DVB) and Poly(BSt) Homopolymers	Milestone	M2.2	Confirm two resulting polymer structures by GPC curves and ¹ H NMR	GPC curves and ¹ H NMR spectra of two polymers.	7-9	2-3
	. ,			spectra			
3	Stabilization and Carbonization Study	Milestone	M3.0	Convert precursors to C materials (yield >80%) after pyrolysis at 1500 °C	Mass yield, TEM, XRD, elemental analysis.	8-12	2-4
at ca		New polyolefii	n precursors t	hat can be efficiently prepared			
	/No-Go Decision on Precursor ment for low-cost, high-strength			transformed to C with mass	Send 10 slides to LightMat /DOE summarizing all results	The end of	<mark>The end of</mark>
uevelopi	carbon fiber			% higher than that of current PAN	demonstrating >80% C- yield.	M12	<mark>Q4</mark>
		with mass yiel	d (<50%).		<u> </u>		
4	Scaling Up the Selected Polyolefin Precursors	Milestone	M4.0	Selected precursors with Kg quantity	¹ H NMR, GPC, DSC and TGA spectra.	13-15	5
5.1	Melt-Spinning of Polyolefin	Milestone	M5.1	Fiber-spinning to polyolefin	Pictures and Videos	16-21	6-7
	Precursors			fibers New polyolefin based CF	TEM, SEM, XRD, Raman, and		•
5.2	Carbonization of Polyolefin Fibers	Milestone	M5.2	products	elemental analysis .	19-24	7-8
New low-cost and high-quality carbon fiber prepared by a			Send 10 slides to LightMat /DOE				
	/No-Go Decision on Precursor			recursor and melt-spinning	summarizing all experimental	The end of	The end of
developr	ment for low-cost, high-strength carbon fiber			efin-based CFs shall exhibit morphology presented in	results. Fiber samples will be provided to DOE for independent	M24	Q8
	carbon nber			h PAN-based carbon fibers.	verification if requested.		
	Developing a New Carbonization		_				
6.1	Process under Mechanical	Milestone	M6.1	A new carbonization system with mechanical tension	TEM, SEM, Raman, XRD, and Instron results.	25-30	9-10
	Tension						
6.2	Carbonization of PE-Pitch (with or without free Pitch) Precursor	Milestone	M6.2	New CF converted from PE-Pitch fiber shows tensile strength >3	Raman, XRD, and Instron results.	30-33	10-11
0.2	Fibers under Tension	Willestone	1010.2	GP		30-33	10-11
	Identifying Suitable Process			Improve carbonization			
6.3	Condition for Carbonization of PE-	Milestone	M6.3	condition to achieve tensile	Raman, XRD, and Instron results.	33-36	11-12
	Pitch Precursor Fibers under Tension			strength >4.5 GPa			
New low-cost polyclefin-based CEs that can exhibit mechanical property like Toray T700S fiber. The end of The end of				The end of			
	Final Project Objective			h and 230 GPa tensile modulus.		M36	Q12


Future: High tensile strength CFs

Nano-polycrystalline √ Order-disorder ratio √ Structure defects (voids) Orientation of basal line Fiber diameter

- Carbonization under mechanical stretching (tension) to remove defects, orient basal line, and control fiber diameter
- Control heating and winding rates

Future Work: PE-co-B-Pitch Fiber and B-Carbon Fiber

Any proposed future work is subject to change based on funding levels.

Collaborations

Partner	Project Roles
Penn State University	Design, Synthesis, and Evaluation of
Dr. Wei Zhu	New Precursors
Mr. Houxiang Li	Fiber-Spinning and Thermal Conversion
Mr. Vandy Sengeh	Carbon Fiber Evaluation
Oak Ridge National	Collaborating with us on
Laboratories	Fiber Processing
Dr. Logan Kearney	Thermal Conversion
Dr. Amit Naskar	Carbon Fiber Evaluation

Summary

In this research project, we have developed <u>a new class of polymer precursors</u> based on a PE-g-Pitch graft copolymer containing PE backbone and Pitch side chains with some free Pitch molecules (serving as plasticizer and precursor).

Several potential benefits of this PE-Pitch precursor over current PAN precursor.

- 1. Low material cost: inexpensive PE and Pitch
- 2. Low processing cost: melt-spinning process
- 3. Low thermal conversion cost: one-step heating under N₂
- 4. Uniform thermal conversion from fiber core to the surfaces
- 5. Higher carbon conversion yield
- 6. Resulting similar nano-polycrystalline carbon fiber morphology

Future Research: Thermal conversion under tension (stretching) to align graphene nano-crystals (order phase) and C chains (disorder phase) along the fiber direction and reduce structural defects (voids).