HyMARC Core Activity: Sorbent

Enabling twice the energy density for onboard H_2 storage

Jeffrey Long Lawrence Berkley National Laboratory Tom Gennett, National Renewable Energy Laboratory

COVID-19 Pandemic halted all work in February 2020. Milestones to be evaluated after re-opening.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID #: ST202

Overview

Timeline*

Phase 1: 10/1/2015 to 9/30/2018 Phase 2: 10/1/2018 to 9/30/2022 Project continuation determined annually by DOE.

(*previously a component of NREL's materials development program and supported annually since 2006)

Budget

DOE Budget (Entire HyMARC Team) Total FY19: \$4.3M Total FY20 (Planned): \$6.25M

SNL: \$1.15M NREL: \$1.5M (covers NIST and SLAC) PNNL: \$1.1M LLNL: \$0.9M LBNL (Long): \$1.1M LBNL (Prendergast) \$0.5M

Barriers addressed

General:

A. Cost, B. Weight and Volume, C. Efficiency,

E. Refueling Time

Reversible Solid-State Material:

- M. Hydrogen Capacity and Reversibility
- N. Understanding of Hydrogen Physi- and Chemisorption
- O. Test Protocols and Evaluation Facilities

Partners/Collaborators

NIST – Craig Brown, SLAC – Michael Toney HyMARC – SNL, LLNL, LBNL, PNNL team members H₂ST², USA – Hydrogen Storage Tech Team Colorado School of Mines - Colin Wolden, Brian Trewyn,

Univ. Hawaii – Craig Jensen, Godwin Severa **Université de Genève** – Hans-Rudolf Hagemann, Angelina Gigante

HyMARC Energy Materials Network: enhanced, highly coordinated capabilities to accelerate materials discovery

Approach and Relevance (Adsorbents)

<u>Approach</u>

1.A Enthalpy/entropy under practical conditions (with NREL, PNNL)

I.B Optimization of sorbent binding energies

- **1.B.1** Electronic structure computations (LBNL, LLNL)
- **1.B.2** Strong-binding sites (LBNL, NREL, NIST)
- I.C Sorbent packing: MOF monolith synthesis (LBNL, SNL, NREL)
- **1.D** Dynamic sorbent materials (LBNL, NREL)
- **1.E** Multiple H₂ binding (LBNL, NIST)

<u>Relevance</u>

Research and development of metal–organic frameworks with high volumetric and gravimetric H_2 storage capacities (Barrier A – C, E).

- Adsorption enthalpy in the optimal range of -15 to -25 kJ/mol
- Open metal sites that adsorb more than two H₂ molecules

Approach 1.B.2: Sorbents with Optimal Binding Energies

Is it possible to create MOFs that adsorb H_2 with an enthalpy in the optimal range of -15 to -25 kJ/mol?

 Values are based upon assumptions about the correlation between adsorption enthalpy and entropy. However, these assumptions are not always valid.

Ni₂(*m*-dobdc)

The Lewis-acidic open metal sites are capable of polarizing and accepting electron density from H₂; however, ΔH is lower than 15 kJ/mol.

π-Backdonation plays a primary role in strong H₂ binding: therefore, π-basic metals (Cu^I and V^{II}) will be incorporated into frameworks.

Accomplishment 1.B.2: *In situ* Powder Neutron Diffraction of Cu-MFU-4/

- Sample dosed with 0.75 D₂/Cu at 40 K and then cooled to 7 K
- Occupation of two distinct D₂ sites near Cu⁺ is apparent
- Occupancy of site I increases upon dosing at successively higher T

MARC

Activated D₂ Binding in Cu¹-MFU-4/

- Significant lattice contraction with strong D₂ binding
- Spontaneous desorption begins around 200 K
- Hysteresis observed on cooling below 100 K

Elucidating the Mechanism of H₂ Chemisorption

- Precursor state corresponds to local energy minimum en route to chemisorption
- Such states have been observed for dissociative and non-dissociative adsorption of various substrates (*e.g.*, H₂, N₂, O₂, CO)

Direct Observation of Precursor Using TPD

New desorption peak around 200 K can be assigned to precursor state

Barnett, Evans, Su, Jiang, Chakraborty, Banyeretse, Martinez, Trump, Tarver, Dods, Drisdell, Hurst, Gennett, FitzGerald, Brown, Head-Gordon, Long, *Submitted*.

DFT Optimizations of Cu^I-MFU-4/ Cluster Models

BMARC 🔞

Question: Why is there an activation barrier to adsorption at an open metal site?

Significant Structural Distortions upon H₂ Adsorption

- Cu moves away from center of cluster upon binding H₂
- Bonds between N and central Zn shorten by a mean value of 0.03 Å

Cluster with adsorbed H₂

Previous Results: V₂Cl_{2.8}(btdd) Contains Open V²⁺ sites

Hypothesis: Increasing orbital interactions with H_2 will allow us to access this range

Square pyramidal V²⁺ sites exhibit appropriate electronic structure

- Triazolate linker stable to the highly reducing V²⁺ (unlike carboxylate linkers)
- $SA_{Langmuir} = 3290 \text{ m}^2/\text{g}, SA_{BET} = 1930 \text{ m}^2/\text{g}$

Jaramillo, Reed, Jiang, Oktawiec, Mara, Forse, Lussier, Murphy, Cunningham, Colombo, Shuh, Reimer, Long. *Nat. Mater.* **2020**, DOI: 10.1038/s41563-019-0597-8 ¹¹

WMAF

Accomplishment: Neutron Diffraction Characterization of V–D₂

- V–D₂ can be resolved despite disorder with V^{III}–Cl sites
- $d(Cu-D_2) = 1.60(3) \text{ Å in } Cu^I-MFU-4I; d(Ni-D_2) = 2.18(4) \text{ Å}$

- First example of a MOF with ∆H in the optimal range between –15 and –25 kJ/mol
- Enthalpy-entropy relation distinct from M₂(dobdc) family

WMAR

- Gravimetric total uptake for V₂Cl_{2.8}(btdd) surpasses Ni₂(*m*-dobdc) at 298 K and 100 bar (1.64 *vs.* 0.98 wt %)
- Initial steep uptake can be observed below 233 K where V²⁺ sites do not contribute to usable capacity

MAR

MOF	∆ H from DRIFTSª (kJ/mol)	Q_{st} from isotherms (kJ/mol)	Total H ₂ uptake at 298 K, 100 bar (g/L)	Usable capacity at 298 K, 5–100 bar (g/L)
Comp. H ₂			7.7	7.3
Ni ₂ (<i>m</i> -dobdc)	-13.7	-12.3	11.9 ^b	11.0 ^b
Cu ⁱ -MFU-4/	-33.6	-32.7	11.0 ^b	9.3 ^b
V ₂ Cl _{2.8} (btdd)	-21.0	-19.5	10.7 ^{<i>b</i>}	9.6 ^b
HKUST-1 ^c	n.d.	-6.9	9.8	9.0

^aDiffuse reflectance infrared Fourier transform spectroscopy, ^bApplied single crystal density, ^cHKUST-1 monolith prepared in Task 1.C.1

- Gain a complete understanding of H₂ adsorption in these V^{II} and Cu^I systems
- Post-synthetically reduce V₂Cl_{2.8}(btdd) to access an all vanadium(II) framework (vanadium density of 4.4 mmol/g)
- Synthesis of V₂Cl₂(bbta): greater gravimetric capacity (6 mmol/g) with likely binding enthalpy ~20 kJ/mol

Any proposed future work is subject to change based on funding levels

Approach 1.E: Binding of Multiple H₂ per Metal Cation

Is it possible to create MOFs with open metal sites that adsorb more than two H_2 molecules?

- This is a long-standing "holy grail" in MOF chemistry
- Highly complex synthetic challenge

 $Mn_2(dsbdc)$ adsorbs two H_2 at a Mn^{2+} site: Runčevski, Kapelewski, Torres-Gavosto, Tarver, Brown, Long *Chem. Commun.* **2016**, *52*, 8351.

Questions:

- Can we access multiple open sites per metal at secondary building units in MOFs?
- Can MOFs with the f-elements (coordination numbers up to 15) bind multiple H₂ per metal?

Accomplishment 1.E: A New 3-Dimesional Uranium MOF—U(bdc)₂(H₂O)₂

- Langmuir surface area = 570 m²/g
- Each uranium is coordinated by two H₂O (TGA shows desolvation step at 130 °C)
- Can we access two open metal sites for H₂ binding in activated U(bdc)₂?

Halter, D. P.; Klein, R. A.; Boreen, M. A.; Trump, B. A.; Brown, C. M.; Long, J. R. Angew. Chem. Int. Ed., submitted.

- Strong H₂ binding to theoretical capacity of 2 H₂ per metal
- Inflection point matches theoretical capacity of 2 H₂ per metal

Halter, D. P.; Klein, R. A.; Boreen, M. A.; Trump, B. A.; Brown, C. M.; Long, J. R. Angew. Chem. Int. Ed., submitted.

In situ Neutron Diffraction Studies of U(bdc)₂ with D₂PMARC®

 $4 D_2 per pore = 2 D_2 per U$

Binding pocket: 3 C–H bonds

- Loading from neutron diffraction data is consistent with that observed in H₂ isotherms
- Unexpectedly there are no D₂–U interactions

Halter, D. P.; Klein, R. A.; Boreen, M. A.; Trump, B. A.; Brown, C. M.; Long, J. R. Angew. Chem. Int. Ed., submitted.

- Mechanism of H₂ chemisorption in Cu^I-MFU-4/: Used powder neutron diffraction and temperature-programmed desorption to characterize a metastable, adsorbed precursor intermediate in Cu^I-MFU-4/
- In situ powder neutron diffraction: Resolved V–D₂ bond distance in V₂Cl_{2.8}(btdd) despite disorder with V^{III}–Cl sites. Bond distance is compatible with strong binding
- Multiple H₂ per metal: Synthesized MOFs with multiple open sites per metal by harnessing larger ionic radii and high coordination numbers of the *f*-elements
- Obtained valuable insight into the mechanistic pathway of activated H₂ chemisorption in Cu^I-MFU-4/ from DFT simulations of the Cu^I nodes
- Measured high-pressure H₂ adsorption isotherms for V₂Cl_{2.8}(btdd), which corroborated binding enthalpy within an optimal operation range
- Demonstrated N₂-induced flexibility at 77 K in two new Zn(bdp) derivatives
- Confirmed photochemical release of CO from Mn carbonyl complexes ligated by bipyridine (bpy) in the zirconium framework UiO-67-bpy
- Verified the synthesis of HKUST-1 monolith, which exhibits volumetric H₂ uptake 50% greater than the powder form

Task	Milestone	Due	Status
1.B.1	Electronic structure computations: Develop a computational protocol to asses thermochemical effects (enthalpy and entropy) in hydrogen adsorption.	9/2020	30%
1.B.2	Optimal binding energies: Synthesize a derivative of Cu ^I -MFU-4/ or $V_2CI_2(btdd)$ with a modified ligand and measure H_2 heat of adsorption.		30%
1.C.1	MOF monoliths: Synthesize at least 2 monolith MOFs that outperform the volumetric storage capacity of monolith HKUST-1 at temperatures above 150 K and < 100 bar.		30%
1.D.1	Flexible MOFs: Synthesize at least 2 different M(bdp) (M other than Co) frameworks and locate step pressures at 77 K.		50%
1.E	Multiple H₂s per metal: Demonstrate either (a) binding of three H_2 to a single metal center, or (b) binding of multiple H_2 to a single metal center, with a maximum heat of adsorption of at least 8 kJ/mol.	9/2020	25%

Future Directions (Adsorbents)

- Use ⁶⁵Cu solid-state NMR to investigate whether thermodynamic or kinetic cooperativity between proximal Cu¹ centers influences H₂ binding in Cu¹-MFU-4/
- Synthesize V-based MOFs with shorter linkers for greater volumetric H₂ storage capacities and a target binding enthalpy of ~20 kJ/mol
- Explore functionalized M(bdp) variants to tune the step pressure at ambient temperatures
- Explore new MOFs with *f*-elements featuring multiple accessible metal binding sites
- Optimize synthetic conditions of MOF-74-type monoliths to increase volumetric H₂ storage capacities
- Predict usable capacities from anharmonic free energy estimates in MOFs

Additional slides

Task 1.C.1. COF Monolith Synthesis

Relevant technical target improve volumetric capacity

Project success – Synthesis of first COF monolith

Colloidal Powder 500 m²/g ~0.1 g/cm³ COF Monolith 400 m²/g ~0.5 g/cm³

Task 1.D.2. Thermal/photo-responsive sorbent matrices

<u>Relevant technical target:</u> 'Tuning' isosteric heats of H₂ adsorption

Approach:

- Cu loaded into a framework, heat treatment to generate open Cu^(I) binding site, enthalpy of H₂ desorption ~15 k/mol
- Photoinduced metal-ligand charge transfer from Cu^(I) to Frameworke generates 'transient' Cu^(II) with decreased π-backbonding
- H₂ evolves when exposed to light

Accomplishment: Successfully demonstrated 'on demand' release of H₂ from sorbent

<u>Project success</u> \rightarrow 'On demand' ambient temperature H₂ delivery

Ambient Temperature Adsorption Kinetics of Cu-MFU-4/ 🕬 MARC 🔞

- Transient uptake measurements performed between 276–284 K
- Data were fit to first-order Langmuir-derived rate law
- Arrhenius equation gives an apparent activation barrier E_a = 12.7 kJ/mol
- Value most reasonably represents lower bound of actual E_a

- Calculations are able to reproduce the presence of a local energy minimum
- Results are highly basis set dependent
- Activation barrier in these calculations is 4.4 kJ/mol

Energy decomposition analysis

Component	Energy (kJ/mol)
Frozen	11.4
Polarization	-3.8
Charge transfer	-34.1
Total	-26.9
$\sigma H_2 \rightarrow V(II)$	-22.7
π V(II) \rightarrow H ₂	-5.4

70% of total binding contributions come from CT

Romit Chakraborty, Martin Head-Gordon