Metal-Organic Frameworks Containing Frustrated Lewis Pairs for Hydrogen Storage at Ambient Temperature

Shengqian Ma (Lead) University of South Florida Di-Jia Liu (Sub) Argonne National Laboratory May 30, 2020 Project ID: ST210

This presentation does not contain any proprietary, confidential, or otherwise restricted information

2020 DOE Hydrogen and Fuel Cells Program Annual Merit Review Meeting 1

Overview

Timeline

- Project start: Dec. 2019
- Phase I end: Dec. 2020
- Phase II end: Sept. 2022

Budget

- Total project requested: \$850K
 - DOE share: \$680K
 - Contractor share: \$170 K
- Funding received in FY2020 (Phase I)
 - \$300 K

Barriers

- Barriers to be addressed
 - A. Hydrogen binding energies
 - B. Hydrogen physisorption capacity at ambient temperature
 - C. New H₂ adsorption mechanism

Partners

- Interactions/collaborations
 - University of South Florida (Lead)
 - Argonne National Laboratory (Subcontractor)
 - HyMARC

Current Technology Options for onboard H₂ Storage

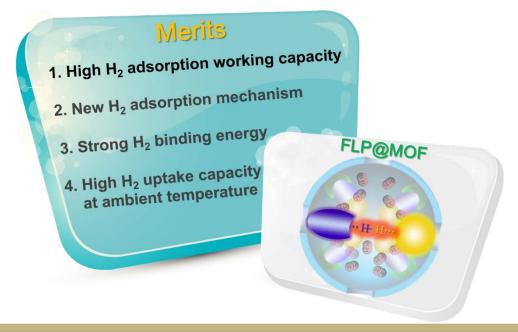
- Compressed hydrogen gas (high pressure >700 bar)
- Cryogenic storage of liquid hydrogen (energy consuming)
- Chemisorption using metal hydrides and chemical hydrides (irreversible and poor kinetics of hydrogen recharging)
- Physisorption using porous materials (fast charge-recharge process but very low uptake capacity at room temperature)

To reach high storage capacity for porous materials at ambient temperature, H_2 binding energy needs to be in the range of <u>15 to 25</u> kJ/mol.

Objective – Relevance

Table 1. Technical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles

Storage Parameter	Units	2025	Ultimate
System Gravimetric Capacity:	kWh/kg (kg H ₂ /kg system)	1.8 (0.055)	2.2 (0.065)
System Volumetric Capacity:	kWh/L (kg H ₂ /L system)	1.3 (0.040)	1.7 (0.050)


Energy Environ. Sci., 2018, 11, 2784–2812.

Objective - Relevance


- Phase I to demonstrate and deliver one FLP@MOF with reversible total gravimetric capacity ≥ 1.5 wt % and total volumetric capacity ≥ 0.012 kg H₂/L at H₂ pressure of ≤100 bar at room temperature.
- Overall to produce one or more FLP@MOF that that meets or exceeds the DOE's 2025 goal of H₂ storage gravimetric density (GD) of 5.5 wt.% and volumetric density (VD) of 0.040 kg H₂/L.

Merits of FLP@MOFs & Their Impact on Technology Barriers

Approach: Encapsulating FLP into MOF (FLP@MOF) for Hydrogen Storage at Ambient Temperature

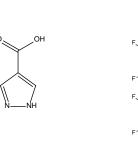
Approach – Development Strategy

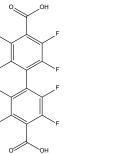
FLP@MOF Design	Characterization &	Optimization &
and Synthesis	Modeling	Engineering
(USF)	(USF/ANL/HyMARC)	(USF/ANL)
 Develop various approaches to synthesize new FLP@MOF Structure characterization of FLP@MOF High throughput synthesis of FLP@MOF 	 H₂ storage capacity & reversibility measurements Advanced characterization of H₂-FLP@MOF Computational modelling of H₂-FLP@MOF 	 Volumetric capacity enhancement of H₂ adsorption in FLP@MOF

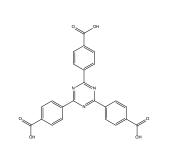
- New FLP@MOFs with high H₂ storage capacities
- Enhancing H₂ hydrogen binding energy to 15-25 kJ/mol
- Unveiling possibly new H₂ adsorption mechanism
- Improving volumetric H₂ adsorption capacity by preparing monolithic FLP@MOF

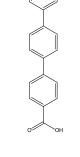
Collaborating with HyMARC/others and leveraging existing experimental / theoretic supports are essential to the project success!

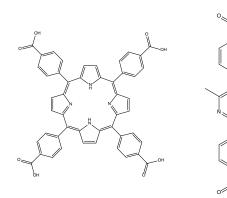
Approach: Phase I Milestone Status

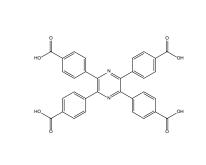

Milestone #	Milestones/Go-NoGo DP	Milestone Verification	Percent Complete
M 1.1.1	Complete synthesize at least six meso- MOFs for the incorporation of FLP	MOF synthesis will be carried out at USF based on literature reported method	100%
M 1.1.2	Design and synthesize a series of FLP@MOF using step-wise anchoring approach	FLP@MOF synthesis will be carried out at USF	20%
M 2.1.1	Complete high-pressure hydrogen storage measurements for stepwise synthesized FLP@MOFs	Isotherm of H ₂ at different pressures will be measured by USF and ANL teams	0%
M 2.2.1	Complete structural studies of the first batch of FLP@MOF	Conventional analytic tools will be applied to study selected FLP@MOF at USF/ANL	10%
GNG 1.2.3	At least one FLP@MOF with reversible total gravimetric capacity \geq 1.5 wt % and total volumetric capacity \geq 0.012 kg H ₂ /L at H ₂ pressure of \leq 100 bar at room temperature	To be delivered to DOE designated lab for certification after initial measurement at USF/ANL	0%

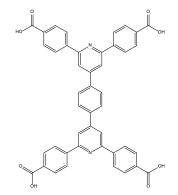

The focus of Phase I is to deliver one FLP@MOF with reversible total gravimetric capacity ≥ 1.5 wt %.

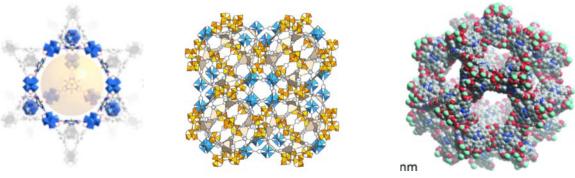



Accomplishments: Ligand Synthesis

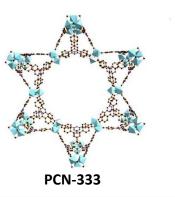

The following ligands have been synthesized for the construction of MOFs.







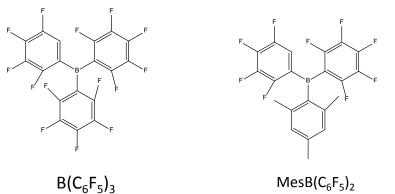
Accomplishments: Preparation of meso-MOFs.

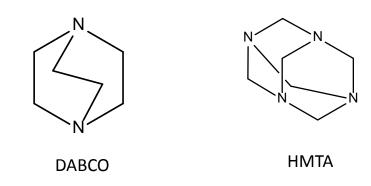

 Meso-MOFs: MOF818, FDM-3, Tb-TATB, Zr-UIO-68, Zr-UIO-67-8F, PCN-333(Fe), PCN-333(Cr), UIO-68, MIL-101(Cr), MIL-101-4F and MIL-101-Br(Cr) with the structures shown below have been prepared as planned.

MOF-818

FDM-3

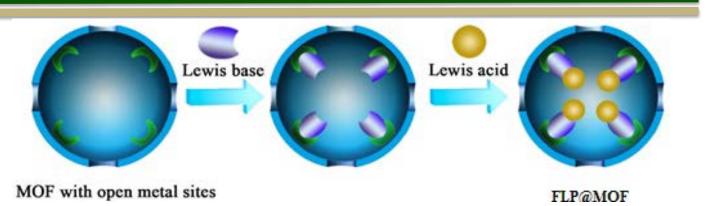
Tb-TATB



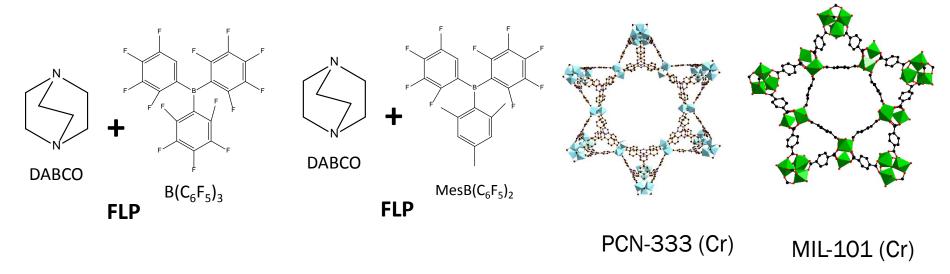


Accomplishments: Synthesis of Lewis acids and Lewis bases for FLP

The following two Lewis acids have been prepared.



The following two Lewis bases have been prepared.



Accomplishments: Step-wise anchoring of FLP on MOF through coordination interaction

 The following two sets of FLPs have been encapsulated in PCN-333(Cr) and MIL-101(Cr) using step-wise anchoring approach.

Collaborations: Working with HyMARC

- HyMARC SNL
 - High pressure analysis
 - Surface characterization tools
- HyMARC PNNL
 - In situ NMR study
- HyMARC LLNL
 - Modeling/simulation of H₂-FLP@MOF Surface XPS
- HyMARC NREL
 - Measurements of Qst for H2 adsorption in FLP@MOF
 - Capacity certification

Looking forward to formulating detailed experimental plan through the discussion with HyMARC members!

The high-pressure sorption instrument at USF will need to be well calibrated to collect reliable high-pressure H₂ sorption isotherms particularly at pressure close to 100 bar.

Proposed Future Work

Remaining Phase I Activities

- Synthesis of a series of mesoporous MOFs
- Incorporation of FLPs into the synthesized mesoporous MOFs via step-wise anchoring approach
- Optimize FLP vs MOF formulation through high throughput synthesis
- Structural characterizations of the prepared FLP@MOFs with conventional and advanced tools
- High pressure H2 storage capacity measurements

Planned Phase II Activities

- Developing other approaches to incorporate FLPs into MOFs
- Continue high throughput synthesis/screening of FLP@MOFs and optimization of FLP@MOFs
- High pressure hydrogen storage measurements
- Advanced characterizations and mechanistic studies of H2 adsorption in FLP@MOFs
- Computational modeling/simulation support
- Process engineering of FLP@MOF

Any proposed future work is subject to change based on funding levels.

 A Provisional Patent Application entitled "FRUSTRATED LEWIS PAIR-IMPREGNATED POROUS MATERIALS AND USES THEREOF" has been filed.

- Eight ligands have been synthesized for the construction of MOFs.
- Six meso-MOFs: MOF818, FDM-3, Tb-TATB, Zr-UIO-68, Zr-UIO-67-8F, PCN-333(Fe), PCN-333(Cr), UIO-68, MIL-101(Cr), MIL-101-4F and MIL-101-Br(Cr) with the structures shown below have been prepared.
- Two Lewis acids and two Lewis bases have been prepared for FLPs.
- Two sets of FLPs have been encapsulated in PCN-333(Cr) and MIL-101(Cr) using step-wise anchoring approach.

Acknowledgements

- This work is supported by US DOE, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office
- Technology Manager: Zeric Hulvey
- Project Manager: Jesse Adams
- Hydrogen Fuel R&D Program Manager: Ned Stetson