

Hydrogen Stakeholder Webinar

National Clean Hydrogen Strategy and Roadmap and Interagency Coordination

August 18, 2023

THE WHITE HOUSE WASHINGTON

Welcome Remarks

Deputy National Climate Advisor to the President Mary Frances Repko

Introduction

Deputy Secretary of Energy David Turk

National Clean Hydrogen Strategy and HIT Deep Dive

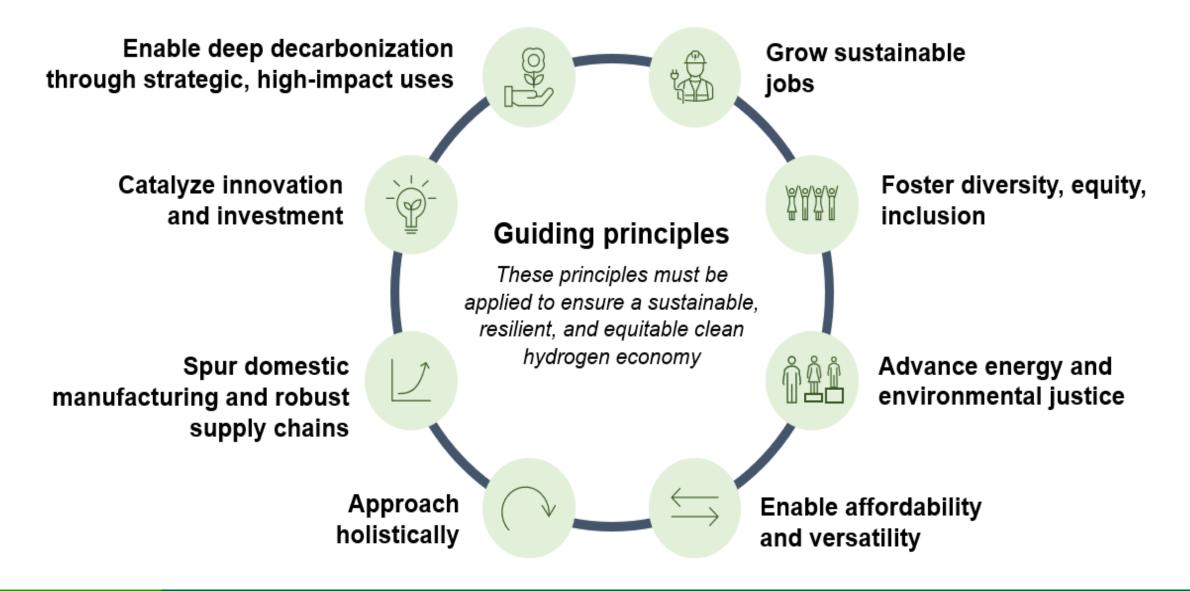
Dr. Sunita Satyapal

Director, Hydrogen and Fuel Cell Technologies Office, DOE

DOE Hydrogen Program Coordinator,

and HIT Director

U.S. National Clean Hydrogen Strategy and Roadmap


Good Jobs and Workforce Development Safety, codes and standards

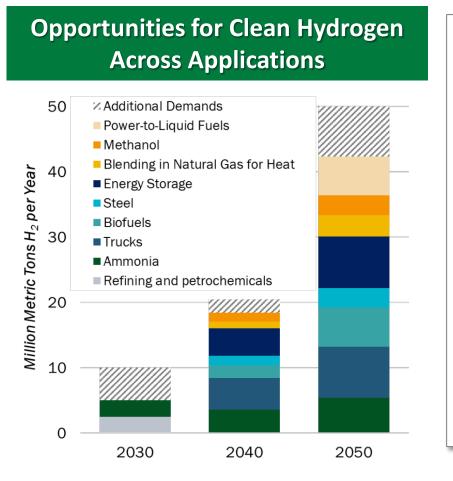
Policies and incentives

Stimulating private

sector investment

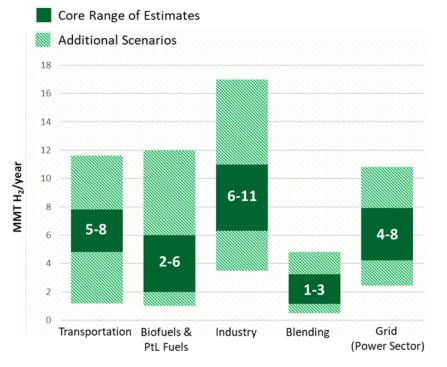
Energy and environmental justice

Strategy 1: Target High-Impact Uses of Hydrogen


Clean Hydrogen Demand and Costs for Market Penetration

Costs include production, delivery, dispensing to the point of use (e.g., high-pressure fueling for vehicle applications)

** Volumes dependent on multiple variables

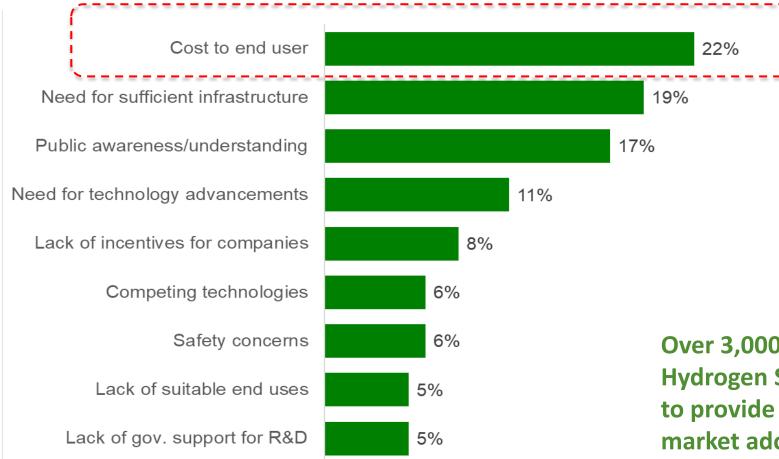

Strategy 1: Target High-Impact Uses of Hydrogen

Clean Hydrogen Use Scenarios

- Catalyze clean H₂ use in existing industries (ammonia, refineries), initiate new use (e.g., sustainable aviation fuels (SAFs), steel, potential exports)
- Scale up for heavy-duty transport, industry, and energy storage
- Market expansion across sectors for strategic, highimpact uses

Range of Potential Demand for Clean Hydrogen by 2050

• Core range: ~ 18–36 MMT H₂


• Higher range: ~ 36–56 MMT H₂

Refs: 1. NREL MDHD analysis using TEMPO model; 2. Analysis of biofuel pathways from NREL; 3. Synfuels analysis based off H2@Scale ; 4. Steel and ammonia demand estimates based off DOE Industrial Decarbonization Roadmap and H2@Scale. Methanol demands based off IRENA and IEA estimates; 5. Preliminary Analysis, NREL 100% Clean Grid Study; 6. DOE Solar Futures Study; 7. Princeton Net Zero America Study

U.S. Opportunity: 10MMT/yr by 2030, 20 MMT/yr by 2040, 50 MMT/yr by 2050. ~10% Emissions Reduction. ~100K Jobs by 2030.

Strategy 2: Focus on Cost-Reduction

Stakeholder Reported Barriers to Hydrogen Market Adoption

Over 3,000 participants at DOE Hydrogen Shot Summit were requested to provide feedback on key barriers to market adoption of hydrogen

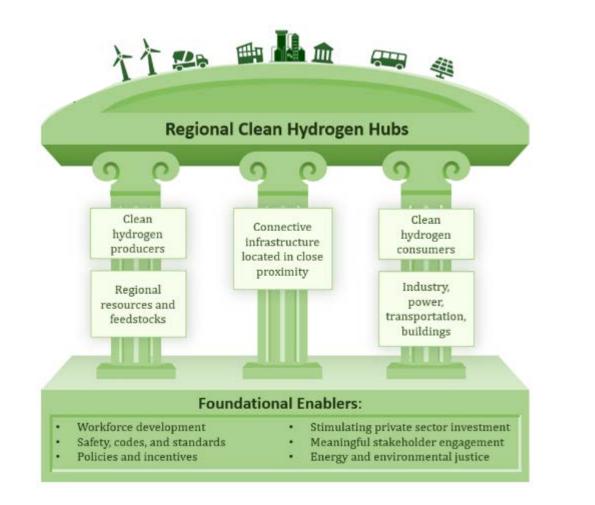
https://www.energy.gov/eere/fuelcells/hydrogen-shot-summit

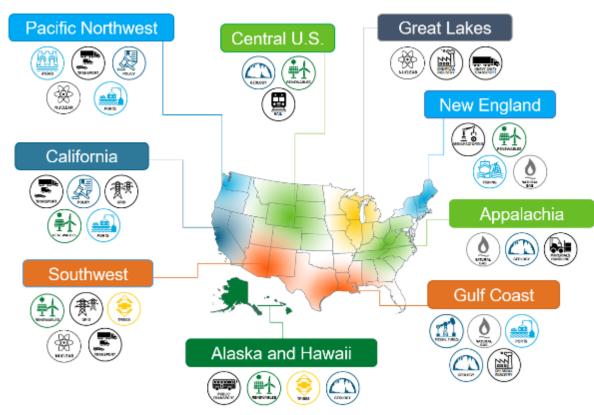
Source: Hydrogen Shot Summit, Sept 2021

Hydrogen

Hydrogen Energy Earthshot

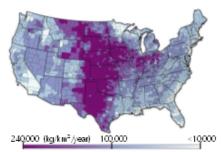
"Hydrogen Shot"

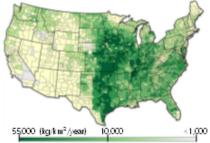

"1 1 1" \$1 for 1 kg clean hydrogen in 1 decade


Launched June 7, 2021

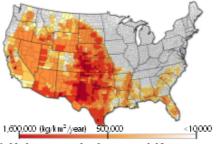
Strategy also includes hydrogen delivery and storage

Strategy 3: Focus on Regional Networks and Ramp Up Scale

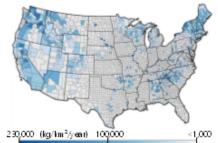

Build Regional Networks through "Clean Hydrogen Hubs"

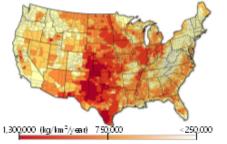


Examples of Stakeholder and RFI Input

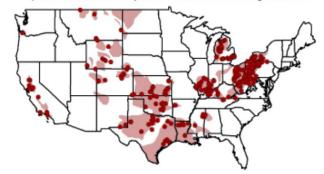

Analysis of Potential Supply Resources and Underground Storage

a) Hydrogen production potential from onshore wind resources, by county land area

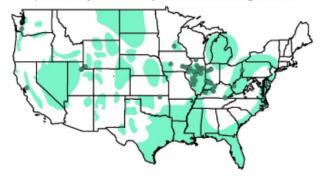

c) Hydrogen production potential from solid biomass resources, by county land area


e) Hydrogen production potential from concentrated solar power, by county land are a

b) Hydrogen production potential from offshore wind resources, by area

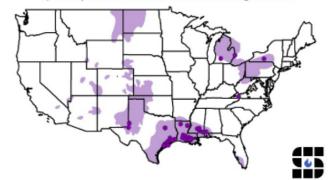


d) Hydrogen production potential from existing hydropower assets, by county land area

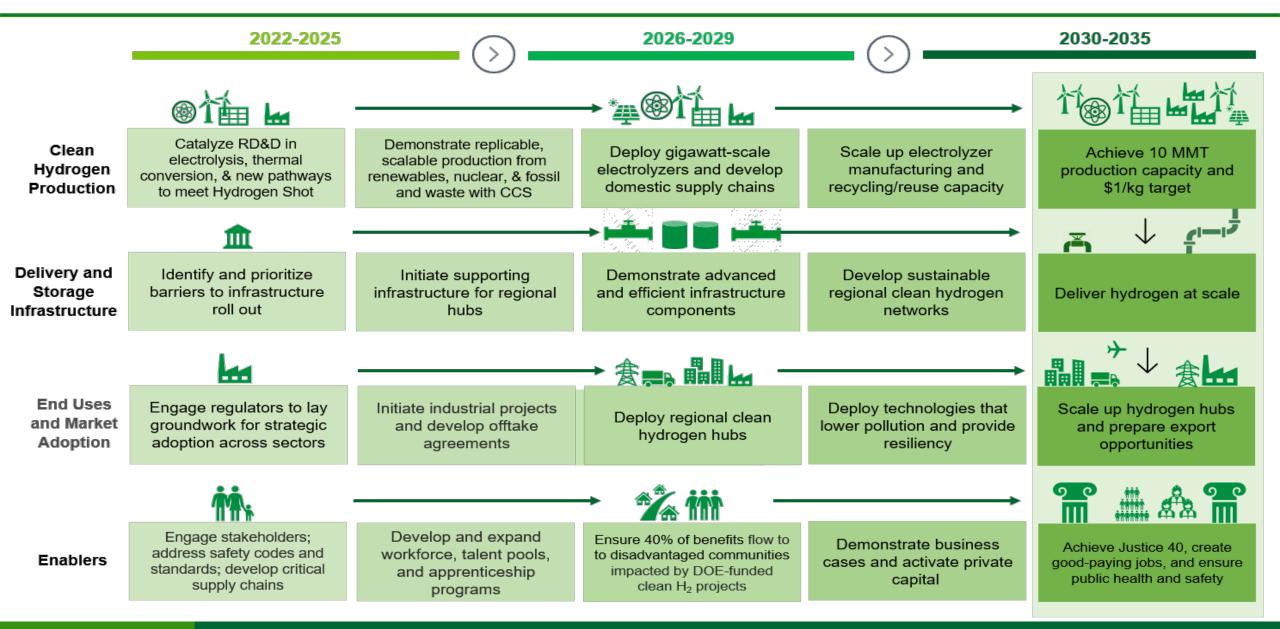


f) Hydrogen production potential from utilityscale PV, by county land area

a) Oil & Gas Fields and Depleted Field Natural Gas Storage Facilities



c) Sedimentary Basins and Aquifer Natural Gas Storage Facilities



d) Salt Deposits and Salt Dome Natural Gas Storage Facilities

Actions and Timelines

Whole-of-Government Approach

HIT Hydrogen Interagency Task Force

42

Hydrogen Interagency Task Force (HIT) across 11 Agencies

The Energy Policy Act of 2005 authorized the establishment of an interagency task force on hydrogen and fuel cells. 42 U.S.C. 16155. Agencies have been collaborating under the existing IWG and are working to expand collaboration by developing a Hydrogen Interagency Taskforce. More details will be available on <u>www.hydrogen.gov</u>.

HIT Working Group Structure and Focus Areas

	Enable National Goals: 10 MMT/yr supply and end use by 2030, 20 MMT/yr by 2040, 50 MMT/yr by 2050						
Γ	Supply and Demand at Scale	Infrastructure, Siting, Permitting	Analysis and Global Competitiveness				
Working Groups	 Enabling large scale production and demand creation Financing, incentives, and compliance tools for commercial scale up Metrics for deployment and USG as offtaker Supply chains and resiliency (critical materials, strategic reserve) R&D to accelerate cost reductions and end use commercialization (JST interface) 	 Siting, permitting, pipelines, storage, and infrastructure Harmonized codes and standards Interoperability and global standardization Safety, emissions (including secondary), sensors, risk mitigation, environmental impact Environmental review and best practices (NEPA, etc.) Pipeline and blending test facilities 	 National strategy and commercial liftoff analysis Impacts and gap assessments (technoeconomic analysis, incentives, resource/water availability, emissions, jobs, manufacturing, etc.) Intellectual property and global landscape assessment Export market analysis Systems integration and optimization 				
Crosscutting	DOE JST Tech Teams: Production, Delivery, Storage, Conversion, Applications, H2 Hubs						
Teams	Workforce, Equity, and Justice						

DOE Joint Strategy Team (JST) Tech Teams will include agency members as appropriate. Each team includes expertise in manufacturing and knowledge management.

Hydrogen Joint Strategy Team

Administration Goals	 Net Zero by 2050 50-52% emissions reductions by 2030 Clean Grid by 2035 Justice 40 	Decarbonization	Infrastru Moderniz		Equity and Energy Justice	Climate Adaptation and Mitigation	
Hydrogen Key Priorities	• WGs to address Key Priorities:	Low-Cost Clean Hydrogen Production	Safe, Low-Cos and Stor Infrastruc	rage	Low-Cost, Durable, and Efficient Fuel Cells & Low NOx Turbines	d Enable End Use Applications at Scale	
Crosscutting Pillars	 Collaboration across offices to address RDD&D in: 	Production	Delivery & Storage	Conversio	Application and Lift Of	0	
Research Areas and Key Targets	 Hydrogen Shot \$1/kg clean H2 by 2031 Application specific targets include: \$2/kg H2 delivery \$9/kWh H2 storage \$80/kW fuel cells for HDVs, 80,000 hr durability, etc. H2 Hubs specific WG 	Temp. Electrolysis • Fossil fuels with CCUS • Biomass	 H2 transport (pipelines, gas, liquid, carriers) Bulk storage Onboard storage Hydrogen Dispensing and Fueling 	 Combustion Fuel Cells Hybrid Syste (polygeneratic combined cy etc.) 	• Chemical an Industrial tion, Processes	d Supply Chain • Safety, Codes and Standards ower • Workforce • Financing and Market Uptake • FEL and Community	
Catalyzing Market Lift Off		Regional C	lean Hydrogen Hi	ubs (\$8B und	er BIL) will jumpsta	rt market liftoff	

Multiple offices across DOE and coordination across agencies

Hydrogen: Arctic Perspective

Dr. Erin Whitney Director of the Arctic Energy Office, DOE

Example: Alaska Hydrogen Working Group

- Led by the Arctic Energy Office, which coordinates cross-cutting DOE work in Arctic to address energy, science, and national security.
- Covers green shipping corridor, Iceland-Alaska knowledge sharing, clean methanol production, engine permitting, and more.
- Drafting an opportunities report for the State of Alaska, with NREL tech support.

Email: <u>arcticenergy@hq.doe.gov</u> Website: <u>energy.gov/arctic</u> (You can find us on LinkedIn, Facebook, and X/Twitter too!)

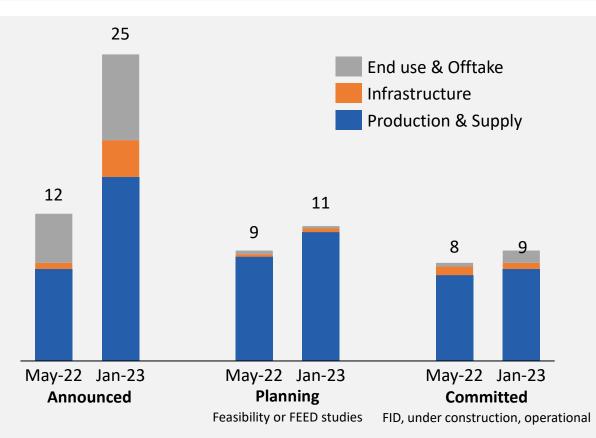
Hydrogen: Deploy and Liftoff

Todd Shrader

Director, Project Management,

Office of Clean Energy Demonstrations, DOE

Regional Clean Hydrogen Hubs


OCED and Industry awardees will build 6-10 regional clean H2Hubs across the country to create networks of hydrogen producers, consumers, and local connective infrastructure to accelerate use of hydrogen.

- Feedstock diversity
- End use diversity
- Geographic diversity
- Employment and training
- Connecting diverse parties to facilitate clean energy business interactions
- Understanding the role clean hydrogen could play in the energy transition
- Real-world context for hydrogen demand and supply
- De-risking technical questions (e.g., sensors, storage, transport) that will allow industry to use higher blended rates of hydrogen

Current Status

- Released funding announcement in September 2022
- Held webinar with encouraged/discouraged applicants in January 2023
- Full applications received April 7, 2023
- Selections in Fall 2023

Hydrogen lacks the bankable demand needed to move from announcements to steel in the ground

North American direct hydrogen investments through 2030 in \$Billions

To reach FID, investors require offtake agreements and financeable structures

Stakeholder Feedback Examples

Recent federal incentives may not create adequate demand to drive national hydrogen market formation; additional policy and regulatory actions are needed.

Today, investments in production outpace offtake, and many offtakers are hesitant to sign long-term contracts.

Hydrogen Council

Key findings of the Clean Hydrogen Liftoff Report

PTC reduces production costs to kick-start the transition from high carbon intensity (CI) to low CI hydrogen for existing uses

DOE H2Hubs and open access infrastructure will move use cases into the money that would otherwise not take-off

In addition to industrial/chemicals use cases, heavy-duty transportation will be critical for market lift-off

Without sustained long-term offtake or merchant markets, domestic market acceleration could be slowed

H2 Liftoff Report: About the Pathways Reports - Pathways to Commercial Liftoff (energy.gov)


Hydrogen: Inter-Agency Collaboration

Dr. Sunita Satyapal HIT Director

Cross Agency Hydrogen Activities - Examples

Partners	Examples of Collaborations & Focus Areas
DOT, DOE	Pipelines, buses, marine, fueling corridors
DOD, DOE, DHS across services	H2Rescue Truck, vehicles, infrastructure, UAVs, UUVs, soldier power, microgrids, and more
DOE, USPS	FC lift trucks and hydrogen infrastructure
NASA, DOE, NSF	Cryogenics/LH2, fuel cells, electrolyzers, storage, DOE consortia (NSF)
DOC (NIST), DOE	Metering, diagnostics, supply chain, blends, standards
EPA, DOE, et al	Proposed rulings (EPA), emissions analysis, ports
USDA	REAP and rural community programs

Additional Federal Agency Hydrogen and Fuel Cell Funding - FY 22 & 23

Funds in millions

Combined FY 22 & 23

Environmental Protection Agency (EPA)

Stephanie Grumet Senior Policy Advisor Office of Air Quality Planning and Standards

EPA Regulatory Proposals and Ports Program Drive Hydrogen Demand

Proposed Rule to Control Air Pollution from New Motor Vehicles: Heavy-Duty Engine and Vehicle Standards

EPA considered H₂ fuel cell technology for select applications that travel long distances or carry heavy loads

Proposed Carbon Pollution Standards for Fossil Fuel-Fired Power Plants: one path to BSER for new and existing turbines include:

30% cofiring low-GHG H₂ by 2032 96% cofiring low-GHG H₂ by 2038

\$3 billion Clean Ports Initiative authorized by IRA

EPA will provide funding for zeroemission port equipment, technology and to help ports develop climate action plans.

https://www.epa.gov/inflationreduction-act/clean-ports-program

EPA is introducing hydrogen as a decarbonization measure across multiple sectors.

Department of Transportation Pipeline and Hazardous Materials and Safety Administration

Mary McDaniel Acting Director Engineering & Research Division

DOT Rulemaking Initiatives

Rupture Detection and Valve Final Rule Published 4/8/2022

- Improve the timeliness of rupture identification, response, and mitigation of safety, greenhouse gas, and environmental justice impacts.
- Establishes requirements for rupture-mitigation valve spacing, maintenance and inspection, and risk analysis.
- Requires operators to identify ruptures and close valves to isolate the ruptured segment as soon as practicable, not to exceed 30 minutes from rupture identification.

Leak Detection and Repair Notice of Proposed Rule 5/18/2023

- Applies to nearly 3 million miles of pipelines; all underground natural gas storage, and LNG facilities.
- Reduce intentional and unintentional emissions from new and existing pipelines
- Requires operator to provide for the timely identification and repair of all leaks.

Safety Administration

Pipeline and Hazardous Materials

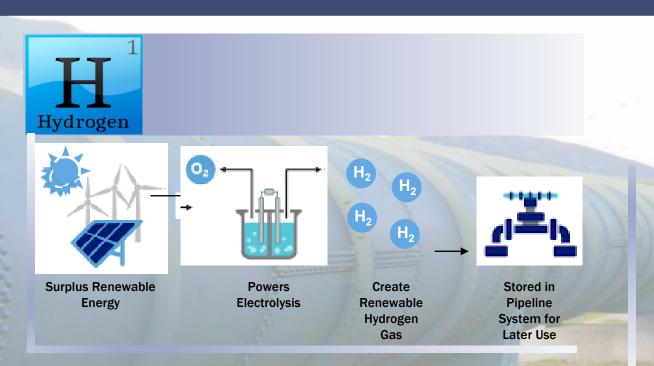
To Protect People and the Environment From the Risks of Hazardous Materials Transportation

Hydrogen Research

Technology Development

Solutions for Predicting / Monitoring Hydrogen Gas Loss

General Knowledge


Review of Integrity Threat Characterization Resulting from Hydrogen Gas Pipeline Service

Technology Development

Advancing Hydrogen Gas Leak Detection Tools when Blended with Natural Gas Pipeline Operations

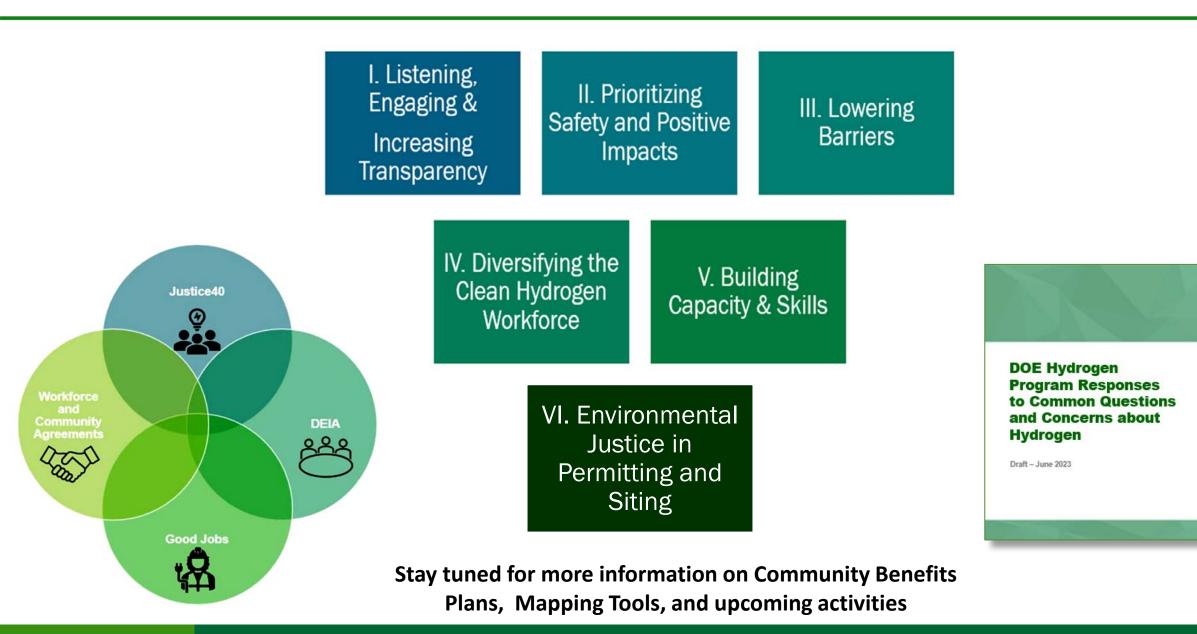
General Knowledge

Determining Requirements for Repurposing Existing Pipelines to Transport Blended & Pure Hydrogen

Technology Development

Validate Existing or Develop New Hydrogen Leak Detection Sensors Compatible with Hydrogen-Natural Gas Blends

U.S. Department of Transportation


Pipeline and Hazardous Materials Safety Administration 30

PHMSA: Your Safety is Our Mission

Hydrogen: The Equity and Environmental Justice Perspective

Dr. Sunita Satyapal

Equity and Environmental Justice Perspectives

Hydrogen: Upcoming Events and Ways to Engage

2 – 3 OCTOBER 2023

RONALD REAGAN INT. TRADE CENTER, WASHINGTON D.C.

CONNECTING THE WORLD'S SENIOR HYDROGEN LEADERS WITH THE AMERICAS

CO-HOSTED BY:

SAVE THE DATE!

YOUR FREE ACCESS TO HYDROGEN AMERICAS EXHIBITION AND H2 TECH SERIES

Meet with over 3000 industry leaders from across the value chain, including government representatives, hydrogen and energy stakeholders, service providers and end-users.

Free-to-attend H2 tech series designed specifically to provide you with a steppingstone into further research and collaboration.

Access to a wide range of **hydrogen research**, **demonstrations** and **analysis** to embark on your journey into the hydrogen value chain.

www.hydrogen-americas-summit.com

Save the date!

2024 DOE Annual Merit Review and Peer Evaluation Meeting May 6-9, 2024

Hydrogen and Fuel Cells Day October 8 - Held on hydrogen's 1

1.008 Hydrogen

Join Monthly H2IQ Hour Webinars

Download H2IQ For Free

Visit H2tools.Org For Hydrogen Safety And Lessons Learned

weight-day

https://h2tools.org/

Sign up to receive hydrogen and fuel cell updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Learn more at: energy.gov/eere/fuelcells AND www.hydrogen.energy.gov

Thank you!

www.hydrogen.gov

Questions?