DOE Hydrogen and Fuel Cells Program Record
Record #: 5013
Date: December 15, 2005
Title: Hydrogen Cost Goal
Item: $2.00 - $3.00/gge

Originator: Roxanne Garland
Approved by: JoAnn Milliken
Date: December 21, 2005
Note: FCVs are assumed to be 1.66 times more efficient than gasoline HEVs (The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs, Committee on Alternatives and Strategies for Future Hydrogen Production and Use, National Research Council and National Academy of Engineering, 2004, p. 66) and 2.4 times more efficient than gasoline ICEVs (Ibid, p. 26). EIA projected gasoline price of $1.29 in 2015 is based on the high "A" case (Annual Energy Outlook 2005, Energy Information Administration, January 2005).
Hydrogen Cost Goal

Why Re-Examine the Hydrogen Cost Target?

• The current hydrogen cost target of $1.50 / gge (untaxed, 2001$) for 2010 was developed in 2002.

• Represented a snapshot in time based on distributed natural gas reforming

• Was not based on comparison to a competitive benchmark

• Timeframe is not consistent with the partnership’s 2015 commercialization decision point
General Principles for Cost Goals

• Provide a "yardstick" for assessing technology performance

• Guide R&D programs by enabling prioritization and focusing of options

• Defined by comparison to evolved baseline or next-best technology

• Developed through a well defined, transparent process

• Reassessment based on major changes in technology or external drivers
Hydrogen Cost Goal

Application of Principles

• Goal is pathway independent

• Consumer fueling costs are equivalent or less on a cents per mile basis

• Evolved gasoline ICE and gasoline-electric hybrids are benchmarks

• R&D guidance provided in two forms
 • Evolved gasoline ICE defines a threshold hydrogen cost used to screen or eliminate options which can’t show ability to meet target
 • Gasoline-electric hybrid defines a lower hydrogen cost used to prioritize projects for resource allocation
Hydrogen Cost Goal

2015 Hydrogen (H2) Goals

Hydrogen Cost Goal

Projects
Hydrogen Cost Goal

Mechanics

\[
\text{H2 Cost} \quad \land \quad \text{(EIA Gasoline Price in 2015)} \quad \leq \quad \frac{\text{Fuel Economy H2FCV}}{\text{Fuel Economy Competitive Vehicle}}
\]

<table>
<thead>
<tr>
<th>Input</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline price projection for 2015</td>
<td>$1.26 / gal (untaxed, 2005 $)</td>
<td>EIA Annual Energy Outlook, 2005</td>
</tr>
<tr>
<td>Ratio of FCV fuel economy to evolved gasoline ICE</td>
<td>2.40</td>
<td>NRC H2 Economy Report</td>
</tr>
<tr>
<td>Ratio of FCV fuel economy to gasoline hybrid</td>
<td>1.66</td>
<td>NRC H2 Economy Report</td>
</tr>
</tbody>
</table>

Results

- **Hydrogen Cost Goal Range** = $2.00 – 3.00/gge.

\(^1\) Ratio of FCV fuel economy to competitive vehicle
Hydrogen Cost Goal

2015 Hydrogen (H2) Goals

Hydrogen Cost Goal Range

H2 Pathway Threshold Cost

H2 Pathway Prioritization Cost

Projects
Assumptions for Cost Model: EIA Gasoline Price (Untaxed) Projections
Source: EIA Annual Energy Outlook 2005, p. 216

- **EIA “Hi A” case** => $1.26/gal (untaxed, $34/bbl)
 - Note: Prices are in 2005 dollars
 - The value in the box is the corresponding crude price in $/bbl

- Reference case - not used; relatively and stable prices, little economic case for change
- “Hi A” case – used; greater increase in future (2020-2025)
- “Hi B” case – not used; too far from best projections (Reference case)
Hydrogen Cost Goals

Recommendation to ESG:

- The Hydrogen Cost Goal should be revised expressed as a range (untaxed in 2005$)/gge for 2015.
 - The Hydrogen Threshold Cost of $3.00 will be a guideline and one factor used to screen R&D projects
 - The Hydrogen Prioritization Cost of $2.00 will be used as a guideline to prioritize the R&D projects (highest resource allocation).
- The Hydrogen Cost Goal should be reevaluated in the event there is a major change in technology, markets, and/or other external drivers.

Next Steps if Receive Approval:

- The Hydrogen Cost Goal will be changed in the Partnership Plan
- JOG will work on communications plan
Backup Slides
The Hydrogen Threshold Cost is based on a Vehicle Fuel Efficiency Improvement Factor of 2.4 from the NAS.

The Lower Hydrogen Threshold Cost is based on a Vehicle Fuel Efficiency Improvement Factor of 1.66 from the NAS.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High “B” World Oil Price</td>
<td>41</td>
<td>1.40</td>
<td>3.36</td>
<td>2.32</td>
</tr>
<tr>
<td>High “A” World Oil Price</td>
<td>34</td>
<td>1.26</td>
<td>3.02</td>
<td>2.09</td>
</tr>
<tr>
<td>Reference Case</td>
<td>27</td>
<td>1.07</td>
<td>2.57</td>
<td>1.78</td>
</tr>
</tbody>
</table>
EIA Case Descriptions

EIA Reference Case
Baseline economic growth (3.1 percent per annum), world oil price falling to about $25 per barrel by 2010 and rising to $30.31 per barrel, and technology assumptions.

High A World Oil Price
Reference case assumptions except that the world oil prices are $39.24 per barrel in 2025, compared with $30.31 per barrel in the reference case.

High B World Oil Price
World oil prices remain high and are $48.00 per barrel in 2025, compared with $30.31 per barrel in the reference case.

Note:
The source of this information is the EIA Annual Energy Outlook 2005 on page 216.
Hydrogen Cost Goal Methodology

\[\text{\$/mi} = \frac{\text{Fuel Cost} [\$/gge]}{\text{Fuel Economy} [\text{mi/gge}]} \]

\[\frac{\text{Cost}^1 \text{ H}_2}{\text{Fuel Economy H}_2\text{FCV}} \leq \frac{\text{EIA Gasoline}^2 \text{ Price}}{\text{Fuel Economy Competitive Vehicle}} \]

\[\text{H}_2 \text{ Cost} \leq (\text{EIA Gasoline Price in 2015}) \]

\[\left[\frac{\text{Fuel Economy H}_2\text{FCV}}{\text{Fuel Economy Competitive Vehicle}} \right]^{3} \]

1 Untaxed
2 EIA Price is untaxed; able to reference
3 NRC fuel economy ratios cited; able to reference
Assumptions for Hydrogen Cost Method: Fuel Economy Ratios for Competitive Options

1. **Gasoline internal combustion engine (ICE) vehicle – no hybridization**

 \[
 \frac{H_2\text{FCV}}{\text{Gas ICEV}} = \frac{2.40}{\text{Fuel Economy}} \quad \text{[NRC H2 Economy Report, p.26]}
 \]

2. **Gasoline hybrid-electric vehicle (HEV)**

 \[
 \frac{H_2\text{FCV}}{\text{Gas HEV}} = \frac{1.66}{\text{Fuel Economy}} \quad \text{[NRC H2 Economy Report, p.26; derived using Gas HEV to Gas ICE ratio of 1.45]}
 \]

1 1%/yr improvement in fuel economy assumed in both cases