Outline

- Market Overview
- Company Overview
- SOFC Technology
- Cell, Stack, Scale-up, System and Manufacturing Status
- Commercialization Considerations
Outline

- Market Overview
- Company Overview
- SOFC Technology
- Cell, Stack, Scale-up, System and Manufacturing Status
- Commercialization Considerations
The Solid Oxide Fuel Cell’s competitive edge: the cleanest power with the highest efficiency.

Feature Plot

Higher Efficiency and Lower CO₂
The definition of disruptive - the potential SOFC Markets

Many potential markets/applications: choose one and focus

Source: Siemens
What Are The Markets....today

- Small/Med DG
 - 1-50 kW
- Mobile 3-10kW APU
- >100kW
- Industrial CHP
- Building Block for 100kW to MW-Class

US DOE: Clean Coal

Completed: $70MM in Technology Development

>100kW

>100kW

HTAC: February 15, 2011
Outline

- Market Overview
- Company Overview
- SOFC Technology
- Cell, Stack, Scale-up, System and Manufacturing Status
- Commercialization Considerations
Company Overview

- A developer of planar solid oxide fuel cells
- Privately held company
- Headquartered in Littleton, Colorado
- SOFC development facilities in Colorado and Alberta, Canada
- Activities in both stationary and mobile SOFC development
- Annual contract revenue from the U.S DOE and DOD is approximately $11 MM
VPS’s 32,000 square foot facility contains product development infrastructure
Outline

► Market Overview
► Company Overview
► SOFC Technology
► Cell, Stack, Scale-up, System and Manufacturing Status
► Commercialization Considerations
SOFC Technology Advantages

- High Electrical Generation Efficiency
- Low Environmental Impact
 - Low SOx, NOx, CO2 Emissions
 - Quiet
 - Vibration-less
- Siting Flexibility
- Fuel Flexibility
 - Propane
 - Natural Gas
 - Coal-derived Fuel Gas
 - Methanol
 - Naphtha
 - Bio-gases
- Cogeneration Potential
 - High Quality Exhaust Heat
- Manufacturing equipment commercially available
Challenges for Commercialization

- The specific metrics vary based on application
 - Cost
 - Life
 - Thermal Cycling
 - Challenges of introducing a new disruptive product into the market space of incumbent product lines
Ceramic Ion Conductors: Early Work

- Walther Nernst (1897)

"that the conductivity of pure oxides rises very slowly with temperature and remains relatively low, whereas the mixtures possess an enormously much greater conductivity"

Initially:
"lime, magnesia, and those sort of substances;"

Later:
"Nernst mass (85% ZrO₂ + 15% Y₂O₃)"

W. Nernst
"Electrical Glow-Light"
U.S. Patent 623,811
April 25, 1899
Comparison of Oxide Ion Conductivity

![Graph showing comparison of oxide ion conductivity](image)

LSGM: La$_{0.9}$Sr$_{0.2}$Ga$_{0.8}$Mg$_{0.115}$O$_{3}$; LSGMC: La$_{0.8}$Sr$_{0.2}$Ga$_{0.8}$Mn$_{0.085}$O$_{3}$
Zirconia-based Electrolyte Materials

- Very low electronic conduction (energy band gap: >7 eV)
- Very high thermodynamic stability (decomposition Po2 at 1000°C: 10-35 atm)
- Easily doped with lower valence cations (such as Ca2+, Y3+, Sc3+) to create oxygen vacancies
- Doped material is highly oxide ion conductive (conductivity: >0.1 (ohm·cm)-1 at 1000°C)

Zirconia-based materials are still the most widely used for electrolytes of SOFCs
Many SOFC Stack Designs
Power density vs. Temperature

- ASC micro tubes
- ASC planar metallic
- ESC planar ceramic
- ESC planar metallic
- ASC mini tubes
- ESC mini tubes
- monolithic
- macro tubes
Outline

- Market Overview
- Company Overview
- SOFC Technology
- Cell, Stack, Scale-up, System and Manufacturing Status
- Commercialization Considerations
Cell Scale-Up Development

The established Tape casting/Screen Printing/Co-firing (TSC) process proved to be flexible enough to allow a >8X increase in cell active area (121 → 1000 cm²) without appreciable changes in performance or yield.

- 25 x 25 cm² cells (550 cm² active area) are being used for stack development.
Cell Power Progression at 0.500 A/cm²

Stainless Steel Current Collectors, Cross-Flow Gas Delivery

- T = 750°C
- J = 0.500 A/cm²
- Fuel = Hydrogen + 3% H₂O
- Uf = 50%
- Oxidant = Air
- Uo = 25%

<table>
<thead>
<tr>
<th>Power (W)</th>
<th>10 x 10 cm²</th>
<th>12.5 x 12.5 cm²</th>
<th>20 x 20 cm²</th>
<th>25 x 25 cm²</th>
<th>33 x 33 cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (W)</td>
<td>32</td>
<td>49</td>
<td>143</td>
<td>241</td>
<td>420</td>
</tr>
<tr>
<td>Cell Voltage (V)</td>
<td>0.80</td>
<td>0.82</td>
<td>0.82</td>
<td>0.84</td>
<td>0.84</td>
</tr>
</tbody>
</table>
Stack Development Strategy

Component Development
- Cell
- Seal
- Interconnect
- Contacts
- Current Collection

Stack Engineering
- Flow Management
- Thermal Management
- Manufacturability
- Repeatability
- Tolerance
- Integration
Overall- the manufacturing capacity and proprietary processes, scalable for volume production, to deliver low-cost products

Tape Casting

Screen Printing

Co-sintering

Process on Green

Continuous Process

One Step Co-Firing

Process Tracking Database

Statistical Process Control

Overall, the manufacturing capacity and proprietary processes, scalable for volume production, to deliver low-cost products.
From Stack Block to 250 kW, System Integrated Power Module

2012-2013: 250kW Power Module & System Integration

Stack Tower

Stack Module Development
2010/2011: Stack Module System Integration (10 to 50kW)

BOP MODULE

STACK MODULE
Outline

- Market Overview
- Company Overview
- SOFC Technology
- Cell, Stack, Scale-up, System and Manufacturing Status
- Commercialization Considerations
Fuel Cells Price Points

- Price-insensitive industrial applications
- Portable power
- Distributed residential power
- Distributed industrial/commercial power
- Transportation auxilliary power units
- Locomotion

Source – Raymond James Ltd.

$5,000 / kW
The VPS Product Development & Delivery Timeline
SECA Phase 3, Wärtsilä and DOD-DARPA/Boeing Phase 2

SECA Operations
Demo/ Commercial Rollout

250kW System

Design, eng, deliver ~50 kW Stack module

250 kW

Demo/ Commercial Rollout

Mark II ~50 kW Systems Tests/Demos

Phase 3: Deliver to Customer
Boeing Wins DARPA Vulture II Program

ST. LOUIS, Sept. 16, 2010 -- The Boeing Company [NYSE: BA] on Sept. 14 signed an agreement with the U.S. Defense Advanced Research Projects Agency (DARPA) to develop and fly the SolarEagle unmanned aircraft for the Vulture II demonstration program. Under the terms of the $89 million contract, SolarEagle will make its first demonstration flight in 2014.

"SolarEagle is a uniquely configured, large unmanned aircraft designed to eventually remain on station at stratospheric altitudes for at least five years," said Pat O'Neil, Boeing Phantom Works program manager for Vulture II. "That's a daunting task, but Boeing has a highly reliable solar-electric design that will meet the challenge in order to perform persistent communications, intelligence, surveillance and reconnaissance missions from altitudes above 60,000 feet."

Under the Vulture II agreement, Boeing will develop a full-scale flight demonstrator, including maturation of the critical power system and structures technologies. Key suppliers for the program include Versa Power Systems and QinetiQ.

During testing, the SolarEagle demonstrator will remain in the upper atmosphere for 30 days, harvesting solar energy during the day that will be stored in fuel cells and used to provide power through the night. The aircraft will have highly efficient electric motors and propellers and a high-aspect-ratio, 400-foot wing for increased solar power and aerodynamic performance.

SolarEagle is one of Phantom Works' rapid prototyping efforts, which also include Phantom Ray, a fighter-sized, unmanned, advanced technology demonstrator scheduled to make its first flight in early 2011, and the hydrogen-powered Phantom Eye demonstrator, a High Altitude Long Endurance aircraft designed to stay aloft for up to four days, also scheduled to make its first flight in 2011.

A unit of The Boeing Company, Boeing Defense, Space & Security is one of the world's largest defense, space and security businesses specializing in innovative and capabilities-driven customer solutions, and the world's largest and most versatile manufacturer of military aircraft. Headquartered in St. Louis, Boeing Defense, Space & Security is a $34 billion business with 68,000 employees worldwide.
VPS has teamed with Boeing Company on a DARPA-sponsored project to demonstrate unmanned air systems (UAS) using VPS’ solid oxide technology as the energy storage and conversion platform.

Phase 2: 2010-2014 – Subscale Flight Demonstration

- **The Team**
 - BOEING
 - Versa Power Systems
 - SPECTROLAB
 - QinetiQ

- **Break the mindset that aircraft are defined by launch, recovery, and maintenance cycles**
 - Unmanned Air Vehicle
 - Operate like a satellite for 5 years at a time

- **200X Voyager Endurance Record**

- **Pseudo-satellite benefits**
 - Increased platform availability
 - Consistent and persistent coverage
 - Smaller fleet size

- **Fundamental issues**
 - Energy cycle: collection or refueling
 - Reliability: ultra-reliable or repairable system
Power Density Progress & its Impact on Commercial Product Potential

Distributed Generation (DG) Stacks (DOE SECA)

<table>
<thead>
<tr>
<th>Residential (DG) Stacks (DOE)</th>
<th>Baseline Residential 390 mA/cm²</th>
<th>64 cell DG-Coal based 390 mA/cm²</th>
<th>92 cell DG-Coal based 450 mA/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Power (W)</td>
<td>1,200</td>
<td>11,000</td>
<td>18,000</td>
</tr>
<tr>
<td>Power to Weight Ratio (W/kg)</td>
<td>69</td>
<td>61</td>
<td>72</td>
</tr>
<tr>
<td>Power to Volume Ratio (W/L)</td>
<td>225</td>
<td>175</td>
<td>200</td>
</tr>
</tbody>
</table>

VPS High Power density Stack

<table>
<thead>
<tr>
<th>Today</th>
<th>Projected</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 cell Sept 10 390 mA/cm²</td>
<td>270 cell projected 390 mA/cm²</td>
</tr>
<tr>
<td>157</td>
<td>2238</td>
</tr>
<tr>
<td>216</td>
<td>472</td>
</tr>
<tr>
<td>775</td>
<td>1689</td>
</tr>
</tbody>
</table>

- **3x**
- **6.5x**
- **3.4x**
- **7.5x**
The VPS High Power Density Stack is the Foundation of the DARPA Program: opens the door for ultra-compact systems of the future

250 kW Stack Modules: 1/4th the size of SOA

- Compact and lightweight
- Modular
- High voltage / Low current

250 kW VPS High Power Density

250 kW SECA

Mobile: 10 kW, military & commercial APU\textregistered{}s Gensets with 1/10th the weight

Low Cost

- 10x less material (weight)
- Automated assembly
Enable Reliability for Renewables: Solving the Energy Storage Problem

The VPS Fuel Cell / Electrolyzer

Water Storage

Continuous SOFC Power Out

Source:
- Wind
- Solar

Air, Oxygen

Intermittent Power In

Hydrogen Storage

Oxygen, to the Air

Applications
- Continuous Power for Renewables
- Grid Support: load level, peak-shave
- Hydrogen commodity production

Unitized Cell
- High energy density
- High round trip efficiency
Summary

- SOFCs offer many advantages over conventional power generation technologies, as well as a bridge to the “hydrogen economy”

- SOFC developers utilize a range of talents in their organizations, including: materials scientists, electrochemists, chemical engineers, mechanical engineers, electrical engineers, manufacturing engineers

- R & D opportunities exist within all of these specialties

- The main challenges that exist for SOFC developers are cost, lifetime and durability for a given market/application

- SOFCs have the potential to address very large power generation markets