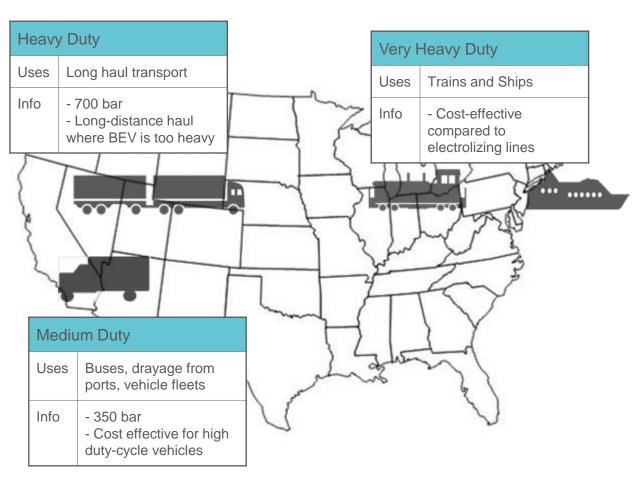


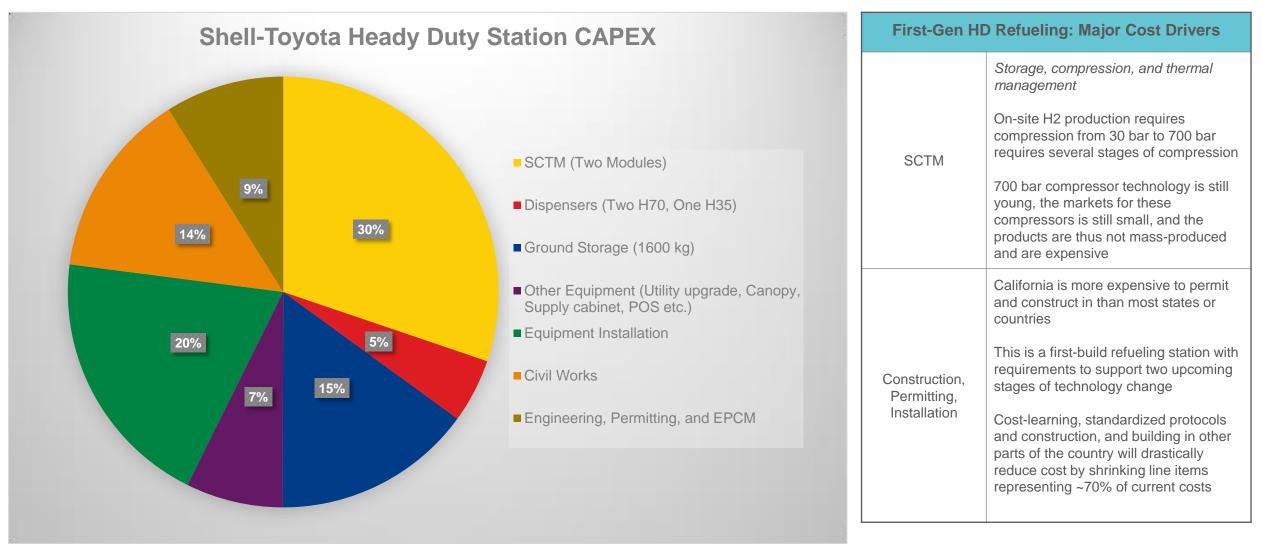
Shell Hydrogen Refueling Station Cost Reduction Roadmap

Jason Munster, PhD Matthew Blieske 12 December, 2018



Disclaimer

								Extracted Cost Savings								
	Sł	nell	Lig	ht Dut	y a	nd He	avy [Duty c	osi	t pro	gres	sion			LD Station	HD Station
	\$18.00	Cost Reduction from # of Retail							Cost Reduction from # of Vehicles			Total Vehicles	>100,000	>10,000		
					Statio \$15.98						/enicies			KG H ₂ /vehicle	4-10	35-100
	\$16.00 \$14.00		\$15.06 \$2.69		\$2.69									Delivered H2	production	e of daily use yields on savings and on efficiencies
(\$/kg)	\$12.00		\$1.04		\$1.04		\$11.72		1.78					KG/day	400	2000-4000
Retail Cost (\$ [,]	\$10.00 \$8.00		\$2.83		\$3.75		\$1.48 \$0.58 \$1.16	\$	1.48 0.40 1.40	Paritu	with asso	line (35 M	ÞG @ 3·50 \$/g	Tech Deployed		Liquifaction and Onsite SMR <i>decreases</i> <i>delivery cost</i>
H2 Re	\$6.00	Parity	with	Heavy Duty	Diesel	@ 3·20 \$/g	al)				\$5.22		\$4.72	HRS		uction of heavy nd cost learning
-	\$4.00		\$8.50		\$8.50		\$8.50	\$I	8.50		\$1.48 \$0.58 \$1.16		\$1.48 \$0.40 \$1.09	Equipment and Tax		Liquifaction or on- site SMR <i>slightly</i> <i>increases cost</i>
	\$2.00 \$-										\$2.00		\$1.75			ing & equipment iciencies
I	φ-		LD	Baseline	HD			0+ stations	HD Scal	ina	LD	Many vehicles	HD	Construction		Out-of-city construction saves costs
	Market Situation for Scaling Construction & Commissioning OPEX H2 Delivered HRS Equipment and Taxes Construction & Commissioning OPEX															


HD Cost Reduction Roadmap: Medium Duty and Heavy Duty

Distribution Technology Progression						
Tech	Use Case	Technical Requirement				
Efficient On- Site SMR	 - 5 tons daily Steam Methane Reformation on or near site - Extremely low distribution costs 	- High volume of purchase at heavy- duty stations				
H ₂ Liquifaction	 Transporting and distributing hydrogen over long distances Cost reductions in distribution, but cost increases in production 	 Cryogenic pumps at refueling stations to pressurize and gasify H2 Robotic refueling and onboard LH2 use for heavy duty 				
H ₂ Pipeline transport system	 Large scale transport of hydrogen 2+ decades from now Distribution costs go from dollars per kg to cents per kg 	- Kilotons per day usage in cities across the country required for effective capital efficiency				

Potential Future Cost Reduction Technologies						
Tech	Use Case	Technical Requirement				
Solid Oxide Fuel Cells	 Potentially higher efficiencies Ability to deal with lower quality fuel 	- Technology is very far from deployment				
Liquid Hydrogen Fuel Carriers	 Potential distribution cost reductions Potential uses in HD refueling 	- Efficient use requires on-board heating and H_2 extraction				

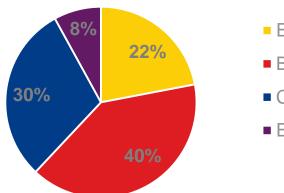
First Generation Heavy Duty Cost Breakdown

Hydrogen Distribution Progression and LH₂ vs. GH₂

Distribution Cost Progression \$3.00 Unit Technical Cost (\$/kg) \$2.50 \$2.00 \$1.50 \$1.00 \$0.50 \$-Past Present Future Tractor CapEx
Tractor OpEx Trailer CapEx Trailer OpEx Trailer Capacity (kg) 600 1200 \rightarrow Trailer Pressure (Bar) 450 \rightarrow 517

> Increasing demand raises numbers of stations and utilization rate

This yields increasing network efficiency


	Liquid H ₂ Transport and Refueling
Capital and Risk Intensive	Economies of scale at massive size require build-out that is out-of-phase with demand Difficult to economically supply small-scale systems
Station Tech	Current stand-off distance requirements create issues for liquid HRS (NFPA2)
and Protocol Issues	In the absense of on-board LH ₂ use, current dispensers and compressors are <i>cost prohibilitive</i> and have <i>short uptime between required maintenance</i>
Opportunities as Technology	Distribution costs relative to GH_2 become attractive with larger volume stations (est. >1T per day) or longer distribution lines (est. >250m radius)
Progresses	Very likely to be the solution to future shipping opportunities, especially cruise liners

	Gaseous H ₂ Transport			
Flexible Stations	Enables very low-cost 35MPa medium duty and heavy duty refueling			
	Allows for use of both small and large distribution options as demand shifts and grows			
Technology Requirements	: Requires high capacity (1000kg+) and low cost (<\$1000/kg) transportation and storage			

Copyright of Shell New Energies

Renewable H₂ Production and Requirements for Success

Present Electrolyzer CapEx Cost Stack

- Electrolyzer
- BoP
- Civil & Utilities
- Engineering

Path to Diesel-Competitive Renewable Electrolyzer H₂

Current costs of over \$1MM / MW capacity for electrolyzers need to be at least halved

Cost Electricity costs are the major driver of electrolyzer H₂ costs, Reduction requiring \$0.04 per kwh at half the current CapEx to breakeven with On-Highway diesel prices in the Midwest

Utilization
Rate

CapEx efficiencies can only be realized at near-full utilization rates, requiring high-capacity factor renewables or massive over-sizing of variable renewable resources

Steam Methane Reformation (SMR) is the current workhorse of hydrogen production

While SMR provides the easiest path to cost-competitive H_2 , the energy intensity of the process and leaks in the natural gas production and transport can result in greenhouse gas emissions on par with diesel vehicles.

Path to Green SMR-produced H₂

	SMR is a very mature technology, and is capital-efficient
Capital . Efficiency	New efficient SMR designs in sized from 100-20,000 kg/day are capable of producing H_2 from low-cost natural gas feedstock
Efficient	SMR H_2 production on-site of biogas production locations will likely not yield production and distribution efficiencies of SMR from a natural gas pipeline.
Trading : Structures	→ Efficient and traceable RIN trading is thus a likely pre-prequisite of large-scale green SMR in the near term

Shell makes no representations or warranties, express or implied, and assumes no responsibilities whatsoever with respect to the completeness, utility or accuracy of any information contained in these slides.

Shell Global Hydrogen – a Growing Presence in the US

Shell Global Hydrogen Projects and Expansions					
Station Type	Description	Learnings and Challenges			
Torrance	Our first-generation hydrogen refueling stations is one of the longest operating Hydrogen Refueling Stations in California	 High maintenance costs and early-stage technology decrease reliability Understanding of technology needs led to better current-gen stations 			
Northern California	Shell Hydrogen is building and branding seven current-generation stations in Northen California with major reliability improvements	Current generation of technology, better use of reliable and low-cost distribution systems, and efficient use of redundancy will result in <i>reduced costs</i> and <i>increased reliability</i>			
Next Generation California Expansion	Shell Hydrogen has leveraged large-scale opportunities to improve performance across the entire value chain	 We have worked with partners to procure and engineer the next-generation systems and components to reduce cost and increase reliability Our next generation refueling stations have a contractual pathway to <i>decrease CapEx</i>, <i>increase uptime</i> and <i>decrease maintenance costs</i> 			
Heavy Duty Refueling Stations	We are working with Toyota and California to develop three heavy-duty refueling stations	 Shell and others are developing demonstration heavy-duty refueling stations in stages The progressive stages will increase station refueling capacity, truck refueling speed, and number of heavy duty stations These stations will help inform heavy duty refueling protocols 			
Dealer Value Proposition	Shell Global Hydrogen is using our learnings from our stations to strategically license our technology	 Shell has created an offering to work with partners to strategically expand consumer access to hydrogen in markets outside of our core strengths Partners can license our latest-generation technology and brand reliability to be leaders in their markets <i>while expanding consumer access to hydrogen</i> 			

8

