Shell Hydrogen Refueling Station Cost Reduction Roadmap

Jason Munster, PhD
Matthew Blieske
12 December, 2018
Disclaimer

Shell makes no representations or warranties, express or implied, and assumes no responsibilities whatsoever with respect to the completeness, utility or accuracy of any information contained in these slides.
Shell Light Duty and Heavy Duty cost progression

Cost Reduction from # of Retail Stations

Cost Reduction from # of Vehicles

Parity with gasoline (35 MPG @ 3.50 $/gal)

Parity with Heavy Duty Diesel (@ 3.20 $/gal)

H2 Retail Cost ($/kg)

Market Situation for Scaling

H2 Delivered HRS Equipment and Tax Construction & Commissioning OPEX

Baseline 100+ stations Many vehicles HD

Total Vehicles >100,000 >10,000

KG H2/vehicle 4-10 35-100

Delivered H2

Higher volume of daily use yields production savings and distribution efficiencies

KG/day

400 2000-4000

Tech Deployed

Liquifaction and Onsite SMR decreases delivery cost

HRS Equipment and Tax

At-scale production of heavy equipment and cost learning

Liquifaction or onsite SMR slightly increases cost

Construction

Cost learning & equipment efficiencies

Out-of-city construction saves costs

Construction Cost learning & equipment efficiencies

Out of city construction saves costs

Shell makes no representations or warranties, express or implied, and assumes no responsibilities whatsoever with respect to the completeness, utility or accuracy of any information contained in these slides.
HD Cost Reduction Roadmap: Medium Duty and Heavy Duty

Medium Duty
- **Uses**: Buses, drayage from ports, vehicle fleets
- **Info**: - 350 bar - Cost effective for high duty-cycle vehicles

Heavy Duty
- **Uses**: Long haul transport
- **Info**: - 700 bar - Long-distance haul where BEV is too heavy

Very Heavy Duty
- **Uses**: Trains and Ships
- **Info**: - Cost-effective compared to electrolyzing lines

Distribution Technology Progression

<table>
<thead>
<tr>
<th>Tech</th>
<th>Use Case</th>
<th>Technical Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficient On-Site SMR</td>
<td>- 5 tons daily Steam Methane Reformation on or near site</td>
<td>- High volume of purchase at heavy-duty stations</td>
</tr>
<tr>
<td>H₂ Liquification</td>
<td>- Transporting and distributing hydrogen over long distances - Cost reductions in distribution, but cost increases in production</td>
<td>- Cryogenic pumps at refueling stations to pressurize and gasify H₂ - Robotic refueling and onboard LH₂ use for heavy duty</td>
</tr>
<tr>
<td>H₂ Pipeline transport system</td>
<td>- Large scale transport of hydrogen 2+ decades from now - Distribution costs go from dollars per kg to cents per kg</td>
<td>- Kilotons per day usage in cities across the country required for effective capital efficiency</td>
</tr>
</tbody>
</table>

Potential Future Cost Reduction Technologies

<table>
<thead>
<tr>
<th>Tech</th>
<th>Use Case</th>
<th>Technical Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Oxide Fuel Cells</td>
<td>- Potentially higher efficiencies - Ability to deal with lower quality fuel</td>
<td>- Technology is very far from deployment</td>
</tr>
<tr>
<td>Liquid Hydrogen Fuel Carriers</td>
<td>- Potential distribution cost reductions - Potential uses in HD refueling</td>
<td>- Efficient use requires on-board heating and H₂ extraction</td>
</tr>
</tbody>
</table>

Shell makes no representations or warranties, express or implied, and assumes no responsibilities whatsoever with respect to the completeness, utility or accuracy of any information contained in these slides.

Copyright of Shell New Energies
First Generation Heavy Duty Cost Breakdown

Shell-Toyota Heavy Duty Station CAPEX

- SCTM (Two Modules): 30%
- Dispensers (Two H70, One H35): 14%
- Ground Storage (1600 kg): 20%
- Other Equipment (Utility upgrade, Canopy, Supply cabinet, POS etc.): 15%
- Equipment Installation: 7%
- Civil Works: 5%
- Engineering, Permitting, and EPCM: 9%

First-Gen HD Refueling: Major Cost Drivers

SCTM
- Storage, compression, and thermal management:
 - On-site H2 production requires compression from 30 bar to 700 bar requires several stages of compression.
 - 700 bar compressor technology is still young, the markets for these compressors is still small, and the products are thus not mass-produced and are expensive.

Construction, Permitting, Installation
- California is more expensive to permit and construct in than most states or countries.
- This is a first-build refueling station with requirements to support two upcoming stages of technology change.
- Cost-learning, standardized protocols and construction, and building in other parts of the country will drastically reduce cost by shrinking line items representing ~70% of current costs.

Shell makes no representations or warranties, express or implied, and assumes no responsibilities whatsoever with respect to the completeness, utility or accuracy of any information contained in these slides.
Hydrogen Distribution Progression and LH₂ vs. GH₂

Increasing demand raises numbers of stations and utilization rate

This yields increasing network efficiency

Distribution Cost Progression

<table>
<thead>
<tr>
<th>Unit Technical Cost ($/kg)</th>
<th>Past</th>
<th>Present</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tractor CapEx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tractor OpEx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trailer CapEx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trailer OpEx</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trailer Capacity (kg)

- Past: 600
- Present: 1200

Trailer Pressure (Bar)

- Past: 450
- Present: 517

Liquid H₂ Transport and Refueling

Capital and Risk Intensive

- Economies of scale at massive size require build-out that is out-of-phase with demand
- Difficult to economically supply small-scale systems

Station Tech and Protocol Issues

- Current stand-off distance requirements create issues for liquid HRS (NFPA2)
- In the absence of on-board LH₂ use, current dispensers and compressors are cost prohibitive and have short uptime between required maintenance

Opportunities as Technology Progresses

- Distribution costs relative to GH₂ become attractive with larger volume stations (est. >1T per day) or longer distribution lines (est. >250m radius)
- Very likely to be the solution to future shipping opportunities, especially cruise liners

Gaseous H₂ Transport

Flexible Stations

- Enables very low-cost 35MPa medium duty and heavy duty refueling
- Allows for use of both small and large distribution options as demand shifts and grows

Technology Requirements

- Requires high capacity (1000kg+) and low cost (<$1000/kg) transportation and storage
Renewable H₂ Production and Requirements for Success

Present Electrolyzer CapEx Cost Stack

- Electrolyzer: 22%
- BoP: 30%
- Civil & Utilities: 40%
- Engineering: 8%

Path to Diesel-Competitive Renewable Electrolyzer H₂

Cost Reduction:

- Current costs of over $1MM / MW capacity for electrolyzers need to be at least halved
- Electricity costs are the major driver of electrolyzer H₂ costs, requiring $0.04 per kWh at half the current CapEx to break-even with On-Highway diesel prices in the Midwest

Utilization Rate:

- CapEx efficiencies can only be realized at near-full utilization rates, requiring high-capacity factor renewables or massive over-sizing of variable renewable resources

Steam Methane Reformation (SMR) is the current workhorse of hydrogen production

While SMR provides the easiest path to cost-competitive H₂, the energy intensity of the process and leaks in the natural gas production and transport can result in greenhouse gas emissions on par with diesel vehicles.

Path to Green SMR-produced H₂

- SMR is a very mature technology, and is capital-efficient
 - New efficient SMR designs in sized from 100-20,000 kg/day are capable of producing H₂ from low-cost natural gas feedstock
 - SMR H₂ production on-site of biogas production locations will likely not yield production and distribution efficiencies of SMR from a natural gas pipeline.

Efficient Trading Structures:

- Efficient and traceable RIN trading is thus a likely pre-requisite of large-scale green SMR in the near term
Shell Global Hydrogen – a Growing Presence in the US

Shell Global Hydrogen Projects and Expansions

<table>
<thead>
<tr>
<th>Station Type</th>
<th>Description</th>
<th>Learnings and Challenges</th>
</tr>
</thead>
</table>
| Torrance | Our first-generation hydrogen refueling stations is one of the longest operating Hydrogen Refueling Stations in California | - High maintenance costs and early-stage technology decrease reliability
- Understanding of technology needs led to better current-gen stations |
| Northern California | Shell Hydrogen is building and branding seven current-generation stations in Northern California with major reliability improvements | Current generation of technology, better use of reliable and low-cost distribution systems, and efficient use of redundancy will result in **reduced costs** and **increased reliability** |
| Next Generation California Expansion | Shell Hydrogen has leveraged large-scale opportunities to improve performance across the entire value chain | - We have worked with partners to procure and engineer the next-generation systems and components to reduce cost and increase reliability
- Our next generation refueling stations have a contractual pathway to **decrease CapEx**, **increase uptime**, and **decrease maintenance costs** |
| Heavy Duty Refueling Stations | We are working with Toyota and California to develop three heavy-duty refueling stations | - Shell and others are developing demonstration heavy-duty refueling stations in stages
- The progressive stages will increase station refueling capacity, truck refueling speed, and number of heavy duty stations
- These stations will help inform heavy duty refueling protocols |
| Dealer Value Proposition | Shell Global Hydrogen is using our learnings from our stations to strategically license our technology | - Shell has created an offering to work with partners to strategically expand consumer access to hydrogen in markets outside of our core strengths
- Partners can license our latest-generation technology and brand reliability to be leaders in their markets **while expanding consumer access to hydrogen** |