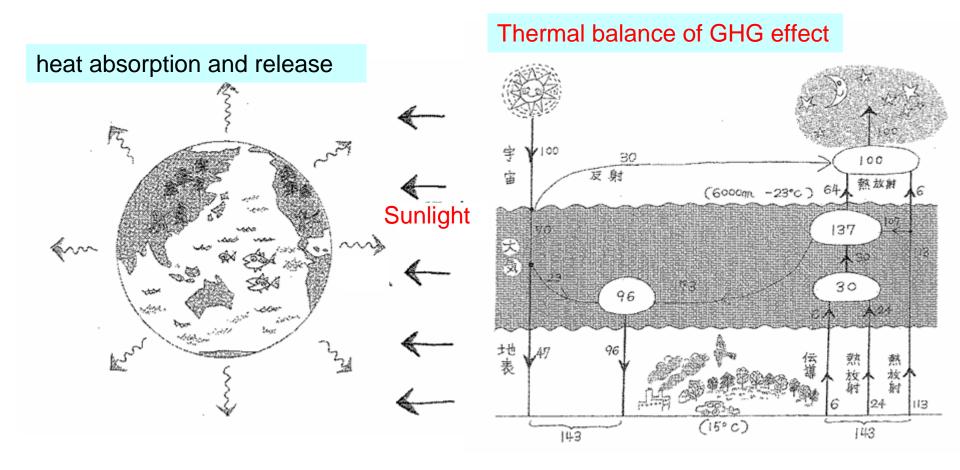

Table paper 2 (Selected)

Hydrogen and Fuel Cells save the Earth

July 22, 2008
Cabinet Office, Japan
University of Electro-Communications
Haruhiko ANDO

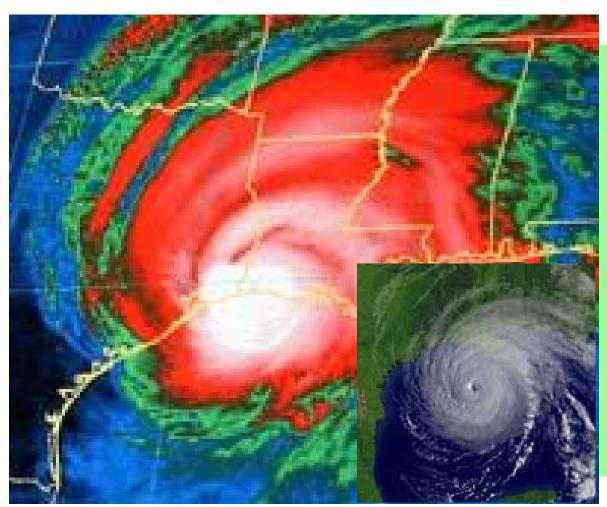
"L'Île mystérieuse" (Jules Verne, 1874)

- "One day all the coal will be used up. Without coal, no more progress for modern life." "What will they burn in the place of coal?"
- "Water," replied Cyrus Smith. "but decomposed into its basic elements. water will one day be employed as a fuel, hydrogen and oxygen will furnish an inexhaustible source of heat and light. Then there will be nothing to fear. As long as this earth is inhabited, it will provide for the needs of its inhabitants. I believe that when the coalmines have been exhausted, they will heat and be heated with water. Water is the coal of the future "
- "I would like to see that," said the sailor.

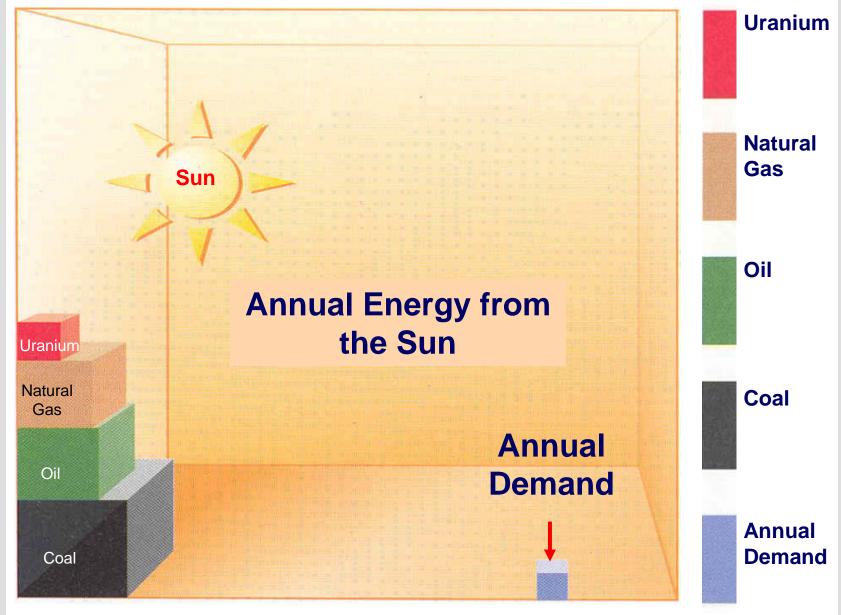

Structure of air

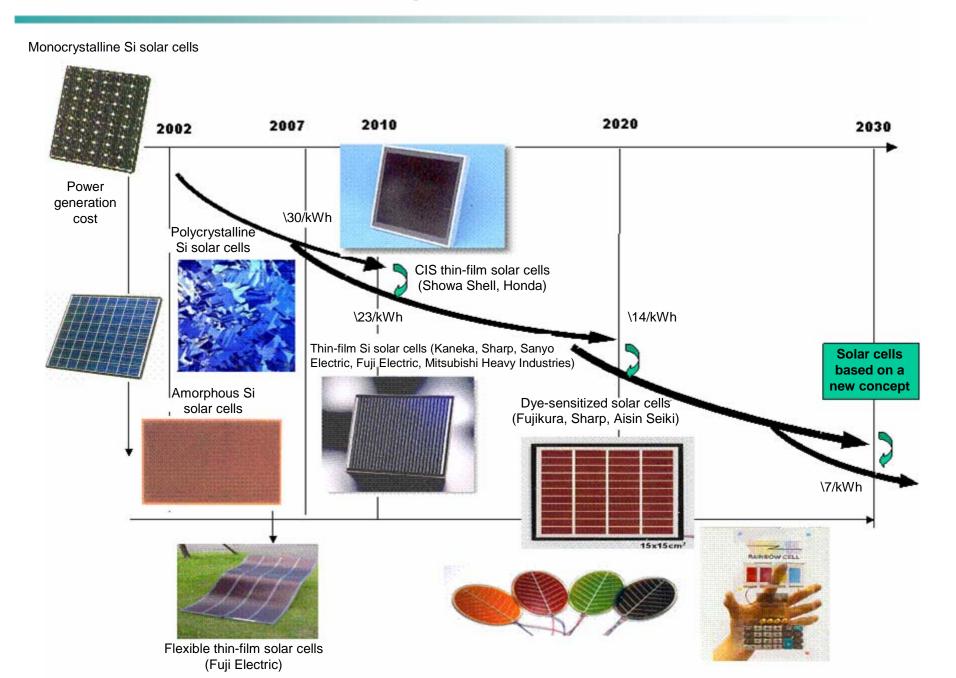
Thermosphere	80-800km	2000 ℃
Mesosphere	50-80km	0→-92.5°C
Stratosphere	11-50km	-70→0°C
Troposphere	0-11km	15→-70°C 80% of Air

The radius of Earth = 6,400 km

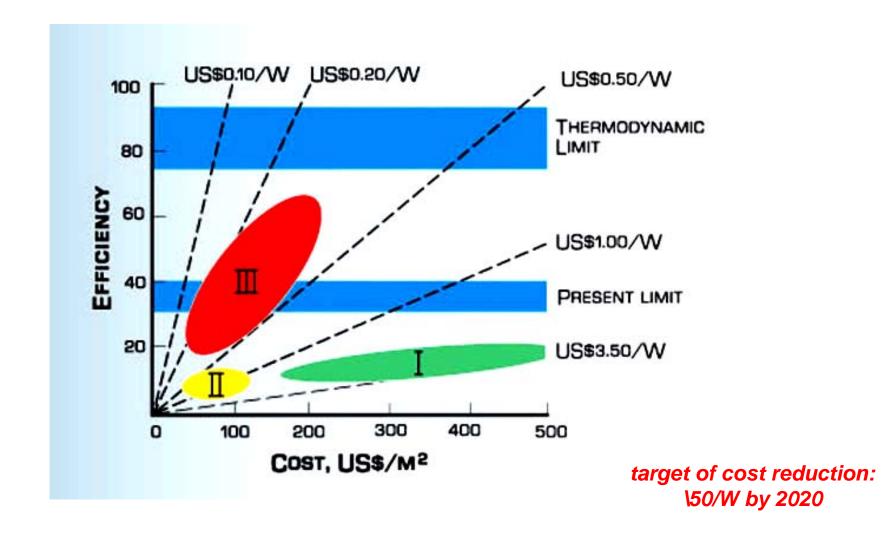

Fierce Hurricanes, Typhoons occur inside Troposphere and surface of sea.

Inside "thin film" of the Earth


Source: Prof. Tatsunari Hirose

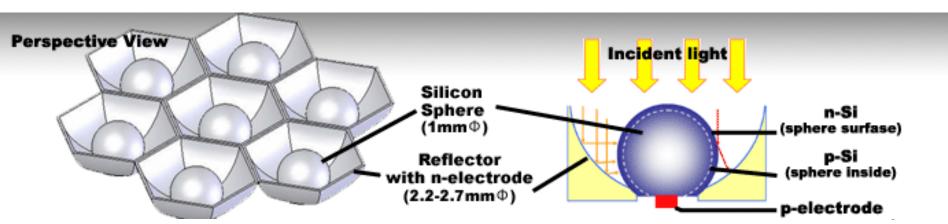


"The global warming influence provides a new background level that increases the risk of future enhancements in hurricane activity,


Dr. Kevin E. Trenberth is Head of the Climate Analysis Section at the National Center for Atmospheric Research Equivalent Stock of Energy Source

Scenario for the Development of PV Modules toward 2030

Third Generation Solar Cell and plan 2020

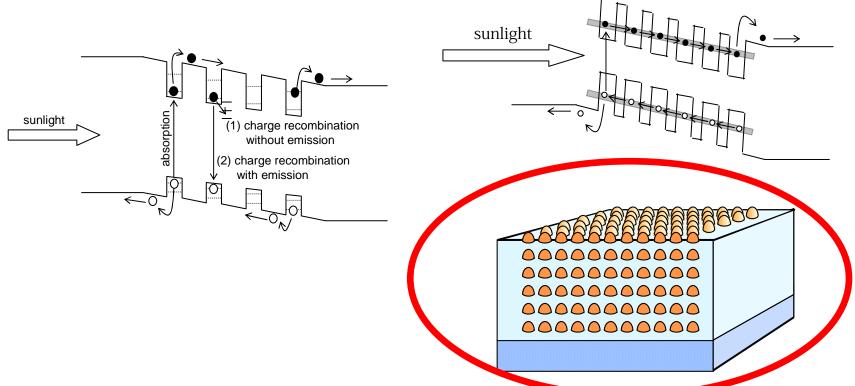


Silicon-Sphere Solar Module by Japanese small Ventures

Kyosemi

Clean Venture 21

Daibutsu, Big Budda is named for infinite amount of lightning (अमिताभ, amitaabha).


Promising Quantum-dot Photovoltaic

Well Potential

Next-Gen Type

Source: Dr. Yoshitaka Okada

3D-Quantum dot superlattice

The Championships for newer Photovoltaic cells, "Wimbledon" in Japan

 9 countries, 10 types, 26 different modules severely compete in Hokuto (west of Tokyo)

Samurai: ancient noble warrior?

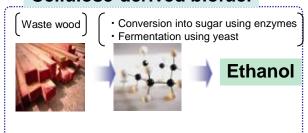
"Innovation Samurai" today is defined here for prepared, decided, devoted, high-minded scientist or engineer who tackles difficult breakthrough targets with bravery, deepest spirits, calm passion and robust personal commitment under empowerment.

Personal computer: crazy or not? How about Personal Generator?

Gates said on starting Microsoft:

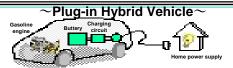
"Microsoft is one of the few companies you can say it just started with a dream. A dream that software would be important. A dream that there would be a computer that was affordable on a personal level. That's a dream that Paul Allen and I had, which at the time seemed very crazy."

Next-Generation Vehicle Fuel Initiative


2. Clean diesel

3. Next-generation batteries

4. Fuel cells/hydrogen Economy


1. Biofuel

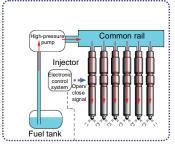
- Bioethanol blended with gasoline, and
- Bicental beedad with displaying

3. Next-generation batteries

Next-Generation Vehicle Battery Development Project Budget (07FY): \$ 50 Million

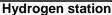
Electricity for daily commuting (Huge cnt cut of oil consumption) Gasoline for long drives

	Improved battery (2010)		Advar battery		Innovative battery (2030)	
	Compact EV	Coi	mpact EV	PHV	Standard-sized EV	
Targeted battery			50			
performance	1		1	.5	7	
Targeted	1/2		1.	/7	1/40	••••
battery cost		3.50				


R&D of next-gen batteries (improvement in performance)

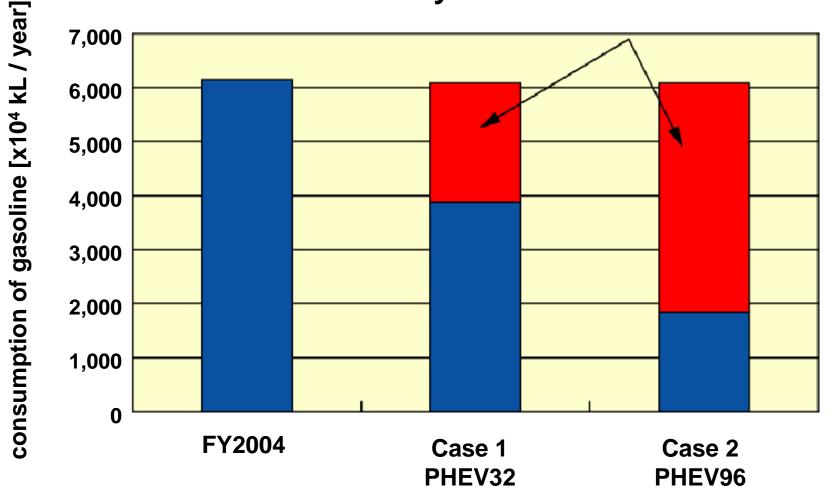
2. Clean diesel

Share of diesel vehicles


Common rail system

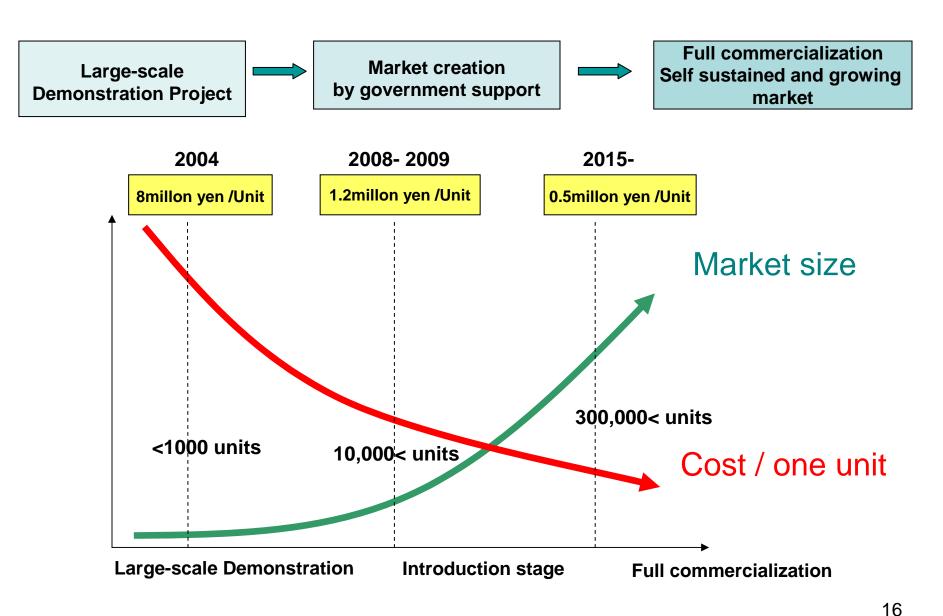
4. Fuel cells/hydrogen Economy

Hydrogen Economy: transition from "carbon cycle" to "water cycle"

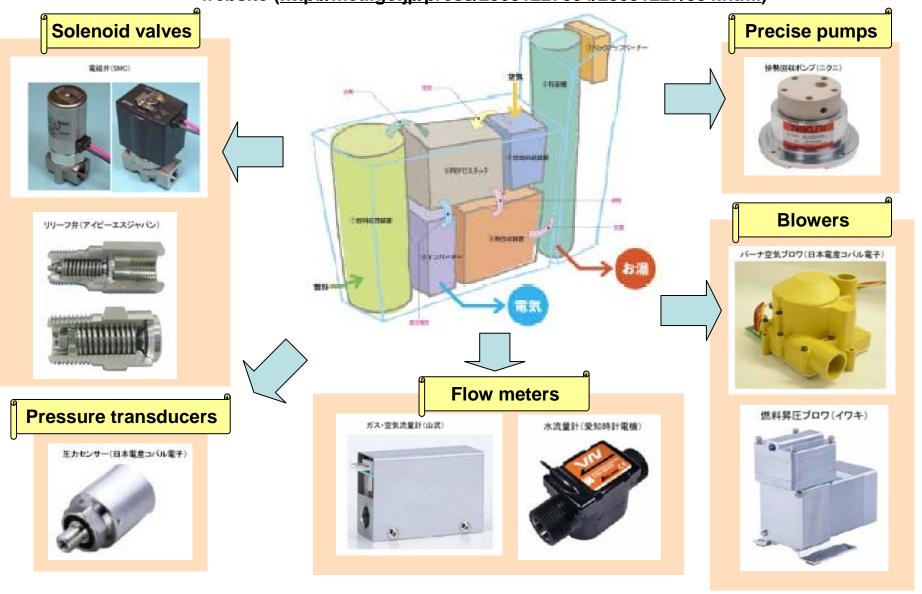

Fuel cell vehicle

Hydrogen vehicles

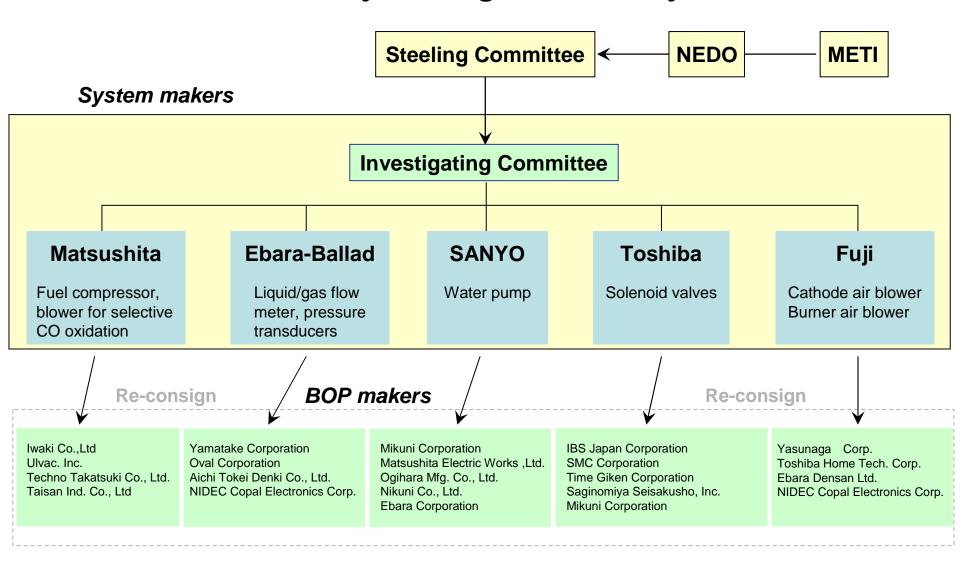
- Powered by way of the combustion of hydrogen instead of fossil fuel (e.g. gasoline)
- Producing very clean exhaust that contains almost nothing but water



Reduction in gasoline consumption by introduction of PHV

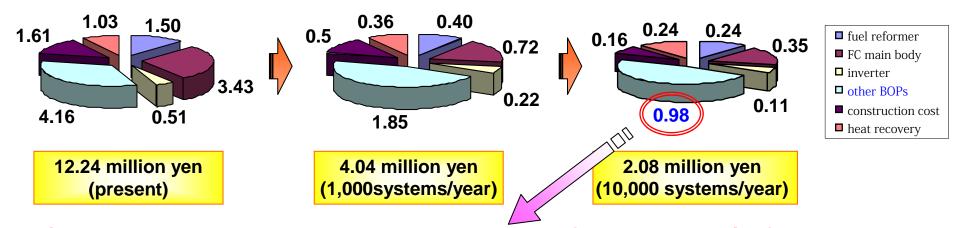

Source: http://criepi.denken.or.jp/en/e_publication/pdf/den433.pdf

Scenario of Market Creation for Residential Fuel Cell

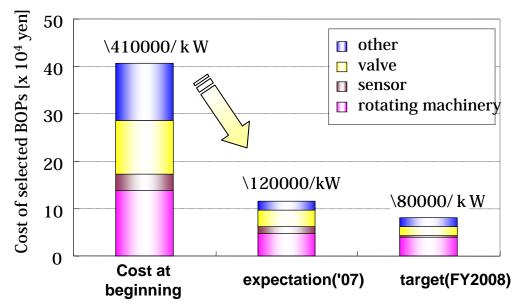


Wanted!!: New Entries in R&D Competition ! for BOP s of Stationary FC Cogeneration System

Specifications of BOPs required for stationary FC system can be seen at the website (http://meti.go.jp/press/20051227004/20051227/004.html)



R&D organization for harmonization of BOP of stationary FC cogeneration system

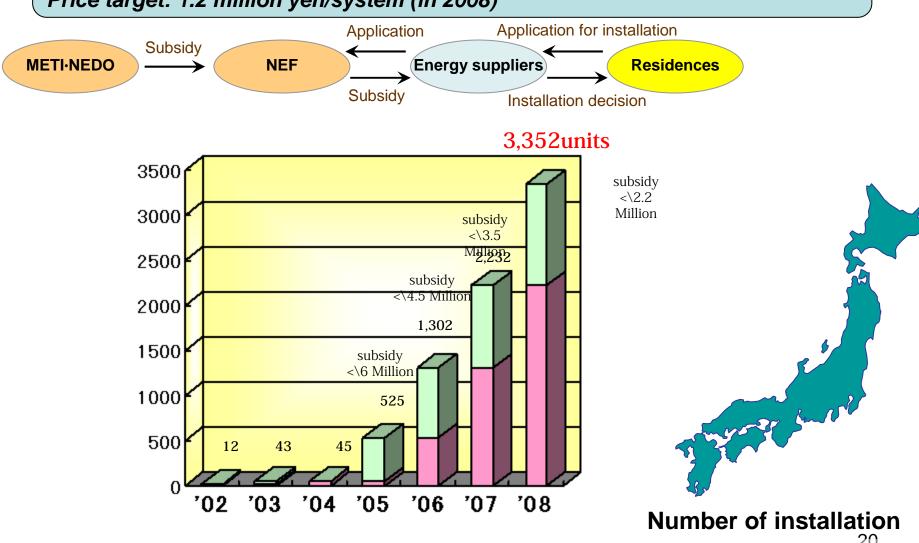


Strategy for Further Cost Reduction of BOP

Forecast of cost of 1kW PEFC system based on mass production (by major system makers)

- System manufacturers selected some BOP devices (0.41million yen/kW) which specification can be harmonized among the participating system manufacturers.
- Concentrated R&D for the selected BOPs to satisfy durability, performance and cost.

 ○ As a consequence of the effort in this R&D ('06~'07), drastic cost reduction has been achieved:

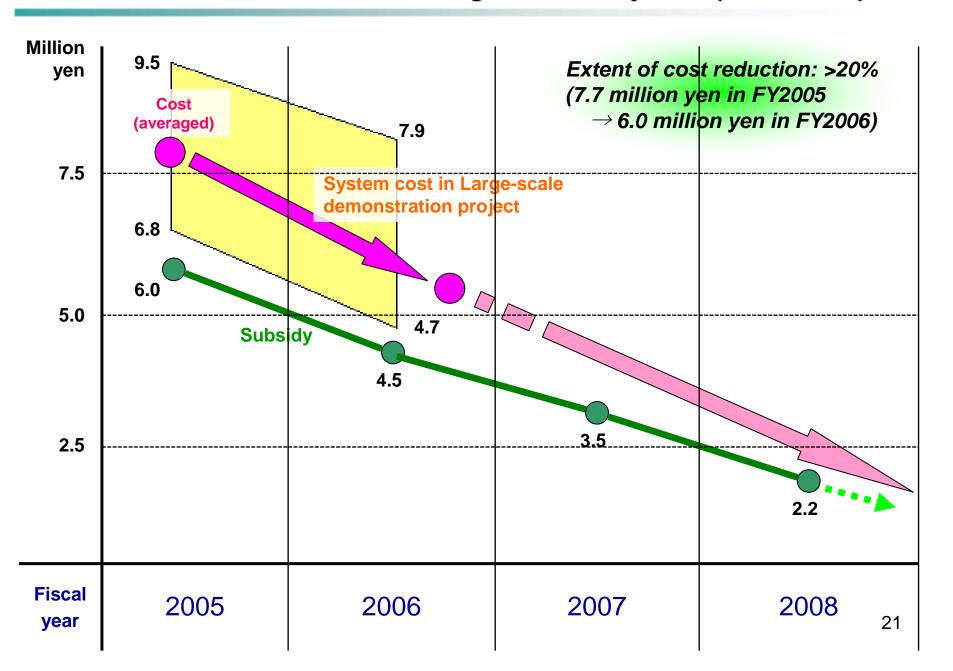

 $410,000/kw \Rightarrow 120,000/kw$

 By concentrated and continuous R&D, improvement of BOPs as well as the further cost reduction will be achieved \80,000/kw by FY2008

19

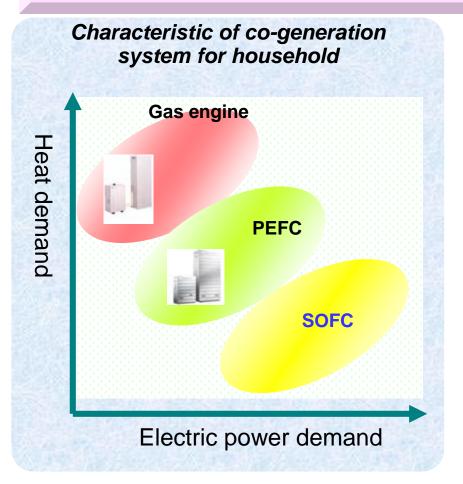
Large-Scale Stationary Fuel Cell Demonstration Project

Provide feedback on various demonstration data, for research and development Step up to mass production and inspection of learning curve Price target: 1.2 million yen/system (in 2008)



■ Accumulated ■ New Installations

Web site:


http://happyfc.nef.or.jp

Trend of Cost of Fuel Cell Co-generation System (1kW-PEFC)

Solid Oxide Fuel Cell (SOFC) Demonstration Project

Aiming at commercialization of residential SOFC co-generation system, demonstration project is started from FY2007 to accumulate our experience of practical operation of SOFC and extract technical subjects to be undertaken for further development of SOFC.

Budget: 0.77 billion yen for FY 2007

Objectives

- clarification of degradation of stack caused by high temperature operation
- (ca. 90 $^{\circ}$ C for PEFC, ca. 1000 $^{\circ}$ C for SOFC)
- Accumulation of experience of practical operation of residential SOFC system

Characteristic of SOFC

- High efficiency of electric power generation
- No expensive catalysts (Pt etc.) needed
- Mature ceramic technology applicable
- Scale-up

Ceremony for installation at PM's Residence

PM is turning a key to open "Hydrogen Economy"

Ebara=Ballard

Panasonic

Demonstration of FCVs and H₂ Station (JHFC-2)

Identifying Issues and Improving Public Acceptance for Hydrogen Society

Hydrogen Infrastructure

FCEV Demonstration Project

METI

ENAA

JARI

Fuel Suppliers

Car Makers

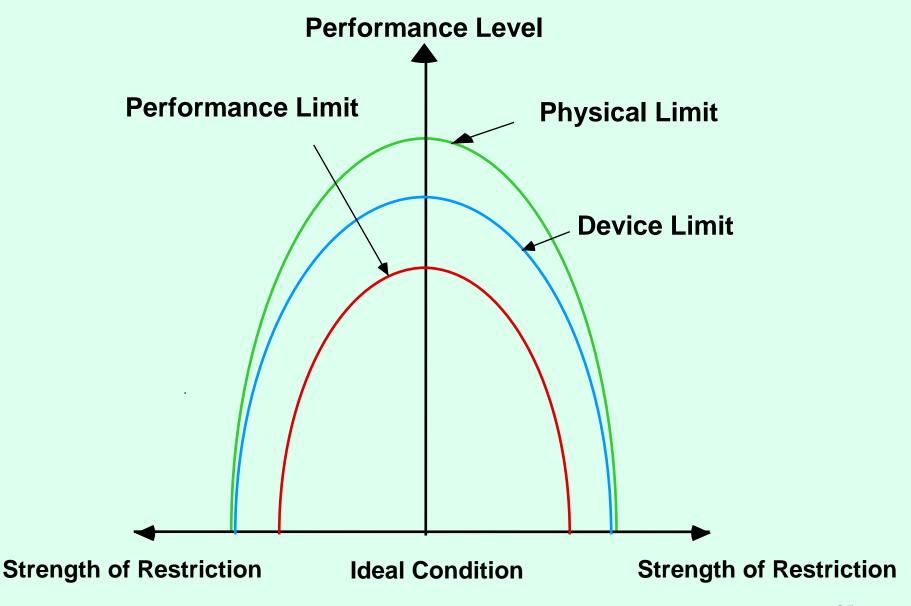
Kansai Area

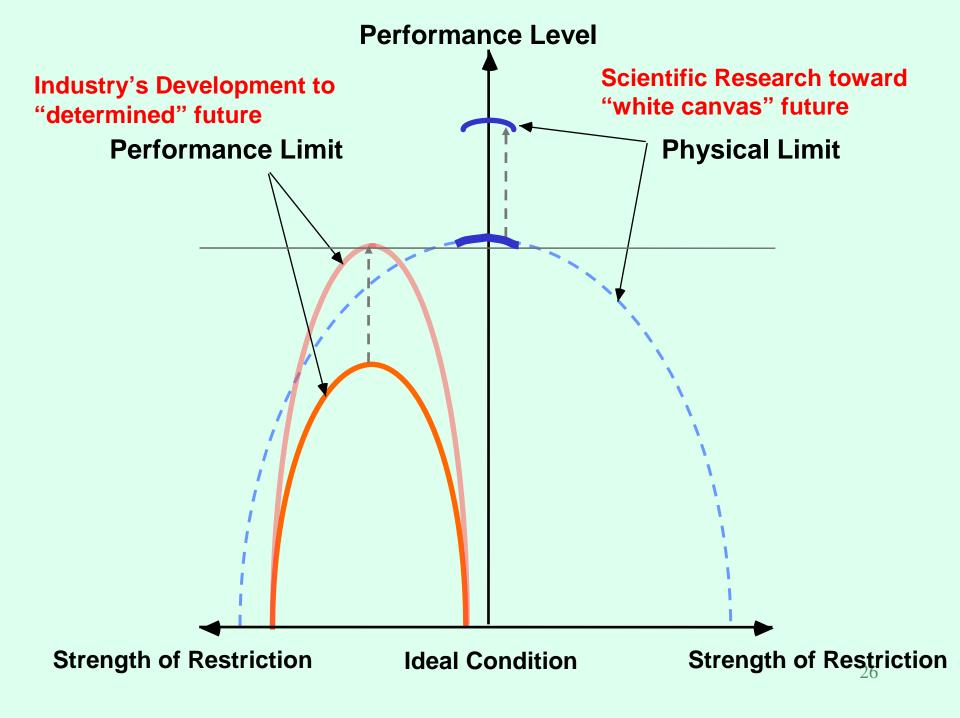
- New applications and hydrogen station demonstration (Wheelchairs, FC motorcycles)
- Emergency power source applications
- Hydrogen station suitable for cities
- Conventional hydrogen supply (Satellite stations)
- H₂ stations are under construction

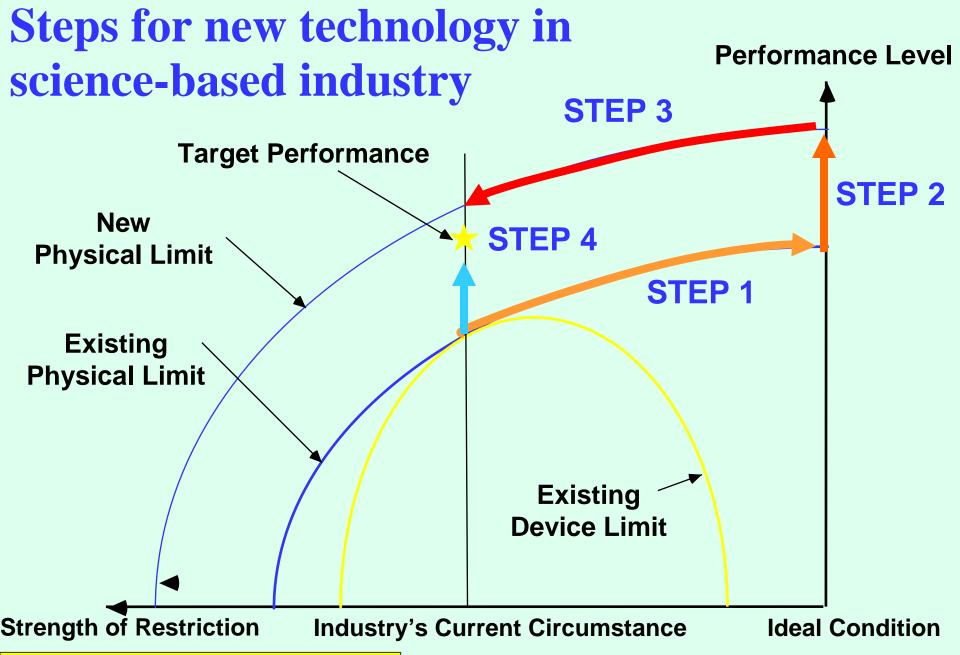
Common

- PR Educational activities Initiate and join events JHFC park event
- PR · Long-term strategy Proposal for educational curriculums in school and social education

- Fuel cell bus demonstration
- Hydrogen station test
- Natural gas reforming and off-site hybrid hydrogen station
- Two H₂ stations and three FCV

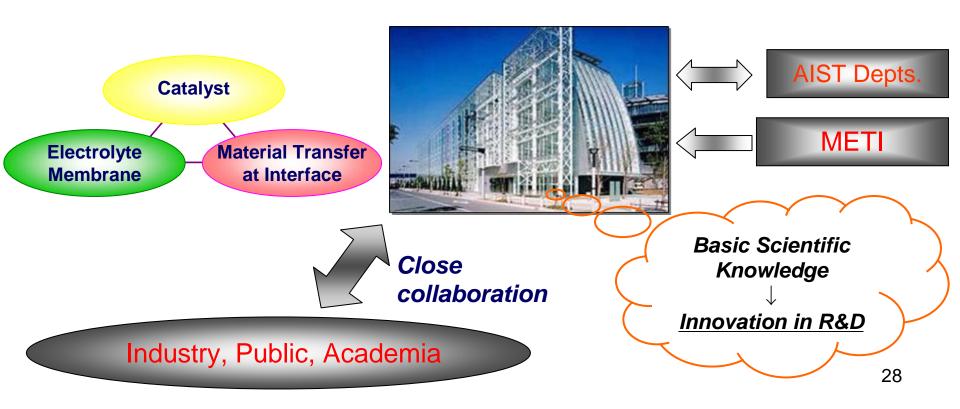

Tokyo Metropolitan Area

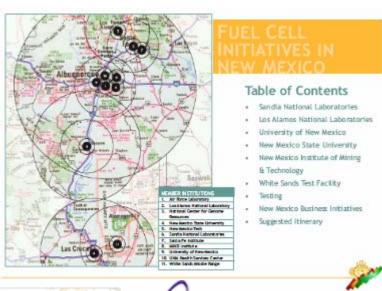

- Fleet demonstration by third party
- Verification of safety, reliability and performance improvements for various hydrogen sources and production methods
- Nine H₂ stations and fifty FCVs


24

ENAA: Engineering Advancement Association of Japan JARI:: Japan Automobile Research Institute

Three layers of Technology

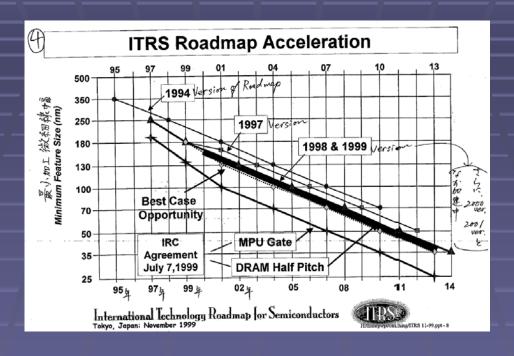



A National Lab. for Basic FC R&D

Polymer Electrolyte Fuel Cell Cutting-Edge Research Center (FC³ = FC-cubic)

- · Established on April 1, 2005
- · Director of FC-cubic: Dr. Hiroshi HASEGAWA
- · Budget: 1.0 billion yen for FY2007(1.2 billion yen for FY2006)

Collaboration with First class Labs in NM Fusion between top science and Japan's fabrication



The world's Greatest Science Protecting America

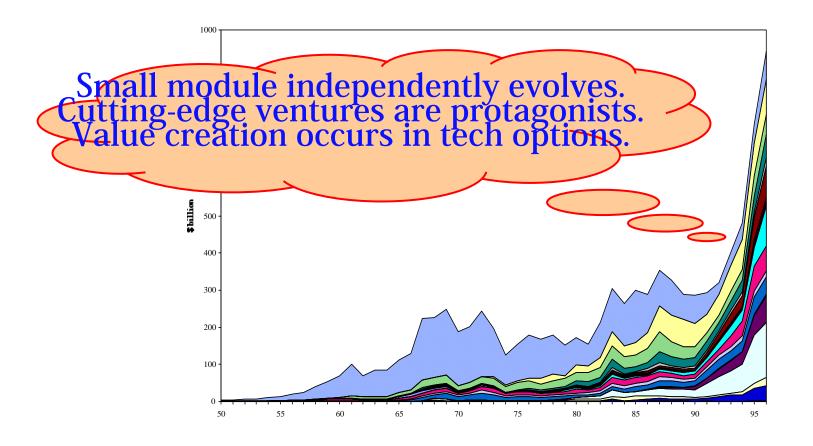
One aspect of ITRS

http://www.itrs.net/Links/2007ITRS/Home2007.htm

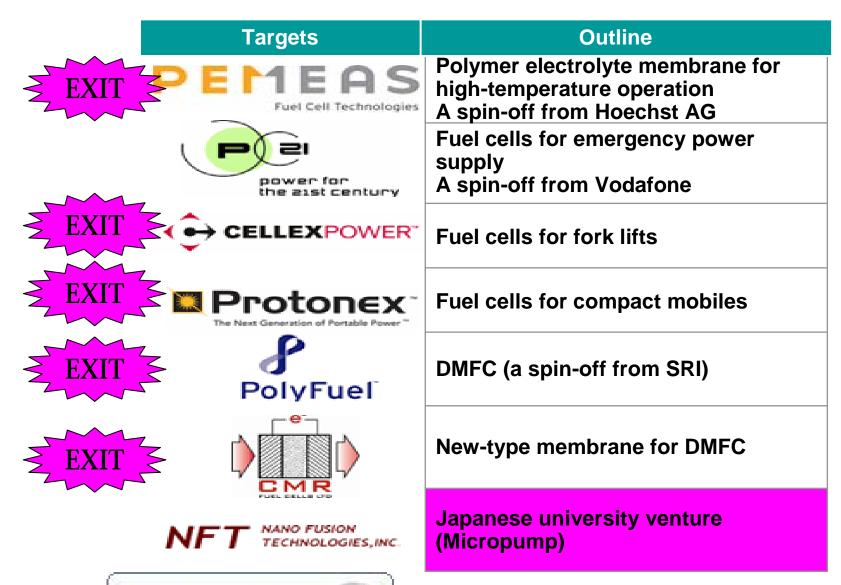
http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Lithography.pdf

Updated target, time limit and problems are open to everybody alluring investment

Top mode; Open Innovation


"Open Innovation: Renewing Topline Growth"

Henry Chesbrough


Executive Director, Center for Technology Management Haas Business School, UC Berkeley

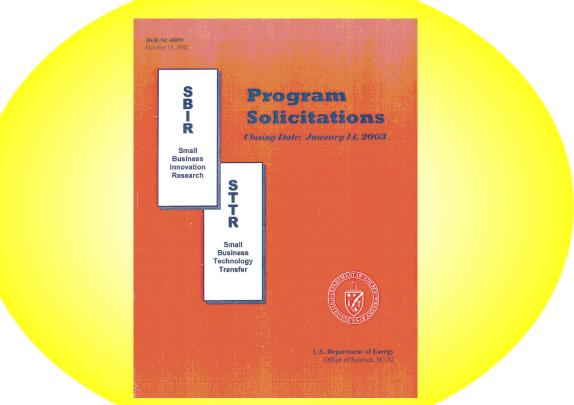
http://cpd.ogi.edu/MST/capstoneWIN2006/ToplineGrowth.pdf

Value Creation in Modular Industry IBM's blue days

Venture Capital Firms Specializing in Fuel Cell Industry

Shell Hydrogen, Mitsubishi Corp., Johnson Matthey, Danfoss, Solvay

New Funds Investing

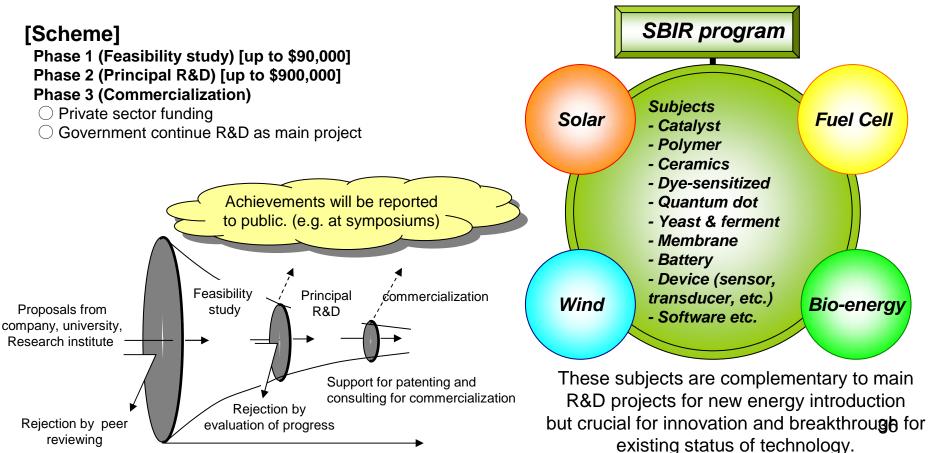

Recently launched funds	Geogra	ohy	Currenc	Size	Tech scope	Lead investor
Zouk Ventures	UK	Apr-06	EUR	25	Energy	N/A
LSP BioVentures (Syngenta fund)	US	Q1 06	USD	100	Biofuel	Syngenta
Dexion Alpha (fund of funds)	UK	Q1 06	GBP	130	New energy	IPO
Impax Environment Markets	UK	Q1 06	GBP	20	New energy	New share issues
CorStone Capital	US	Mar-06	USD	100	Tech in China	N/A
NW Brown	UK	Q1 06	GBP	25	SMEs in UK	UK government
DFJ Element	US	Q1 06	USD	270	Green tech	Calpers
Hydro	Norway	Feb-06	NOK	400	Energy	Hydro
Kleiner Perkins	US	Q1 06	USD	100	Green tech	N/A
Conduit Ventures	UK	Q2 06	EUR	100	H2 & FC	Shanghai etc

USDOE's SBIR R&D Topics

- In Program Solicitations annually published, the DOE indicates R&D topics eligible for grants by each DOE office.
- For the 2006 version, refer to:

http://www.science.doe.gov/sbir/solicitations/fy%202006/table_of_contents_sub.htm

Front cover of Program Solicitations


New attempt: Strategic Promotion of R&D for Renewable Energy Introduction through Small Business Innovation Research Program

[What's SBIR and why?]

SBIR is a highly competitive program which encourages small business to explore their technological potential and provides the incentive to profit from its commercialization. By including qualified small businesses in the nation's R&D arena, high-tech innovation is stimulated and Japan gains entrepreneurial spirit as it meets its specific research and development needs.

[Target and areas]

Small and medium companies, universities, and research group that which have a strong venture-capitalism in the new energy businesses such as solar energy, wind energy, tidal energy, geo-thermal, biomass energy as well as other related technologies for reliable and efficient utilization of new energy such as fuel cell and battery.

US Top 10 Biopharmaceutical Companies in Sales in 2000 used SBIR in their early stage

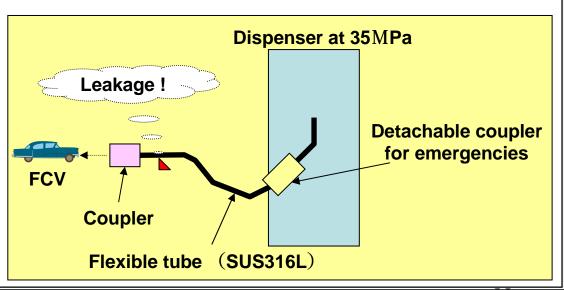
Rank	Company name	Sales (\$ million)	With/ without grants	Established in:	Phase I	Phase II	Title
1	Amgen			80	86	88	RECOMBINANT DNA-DERIVED PERTUSSIS SUBUNIT VACCINE
	<u> </u>				89		EXPRESSION
2	Genentech			76	_		
3	Serono			06	_		
4	Chiron			81	83	84	FEEDBACK CONTROLLED OLIGONUCLEOTIDE SYNTHESIZER PHASE I
					85		
					85	87	GENETIC ENGINEERING APPROACHES FOR AIDS VACCINES (MICE, RABB
					85		
					86	88	GENETIC ENGINEERING APPROACHES FOR MALARIA VACCINES
					90		CYTOMEGALOVIRUS GLYCOPROTEIN B RECOMBINANT ANTIGENS
					90		DEVELOPMENT OF A CYTOMEGALOVIRUS SUBUNIT VACCINE
					90		DEVELOPMENT OF A DEFECTIVE HEPATITIS
5	Biogen			78	86		
	J				86	87	MULLERIAN INHIBITING SUBSTANCE
					87		SOLUBLE MHC MOLECULES TO INDUCE ALLOGRAFT TOLERANCE
					87		PRODUCTION OF RECOMBINANT PROTEINS IN MILK
					96	97	High Numerical Aperture Scintillating Fibers
6	Genzyme General			81	83		
					84		
					85		
					86		
					88	89	PURIFICATION OF HIGH MANNOSE OLIGOSACCHARIDES
					97		EMBRYONIC STEM CELLS
7	Immunex			81	86		
					86		
					88		MOLICULAR CLONING
8	Medlmmune			88	_		
9	Millennium			91	97	98	NOVEL DRUGS FROM UNCULTURABLE FUNGI
	Pharmaceuticals				97		IDENTIFICATION OF FUNGAL DERIVED IMMUNOSUPPRESANTS
					98		GENETIC ENGINEERING OF FUNGAL POLYKETIDES
10	Gilead Sciences			87	89		RIBOZYME-LIKE ANALOGUES OF OLIGORIBONUCLEOTIDES
					92	94	OLIGONUCLEOTIDES BEARING FORMACETAL LINKAGES AGAINST HIV
					92		PERMEATION- ENHANCED PRIMER- DISRUPTING ANTIVIRAL AGENTS
					92	93	NOVEL INHIBITORS OF THROMBIN

Source

The ranking in sales was compiled by NRI based on the data available on Contract Pharma and Hoovers Online.

The use of SBIR grants was confirmed on Tech NET, SBA.

Trouble in Flexible Tube of H₂ Station during EXPO 2006 in Aichi


H₂ leakage due to crack in flexible tube of H₂ dispenser (the material lasted only 1/10 of its stated lifespan)

Leakage attributable to H_2 embrittlement.

H₂ station at Seto-minami (EXPO 2005)

A New National Lab. for Hydrogen Material R&D

In order to realize a hydrogen energy society, a new laboratory "HYDROGENIUS"

was founded last June, which aims to establish basic technologies to use hydrogen more safely and conveniently.

- HYDROGENIUS was established on June 1, 2006.
- Budget: 1.67 billion yen for FY2007

Organization of HYDROGENIUS

HYDROGENIUS: Top Scientists from Overseas

Prof. R.O. Ritchie University of California, USA (2007∼)

Dr. Jean-Marc Olive University of Bordeaux I, FRANCE (2006.8.16∼)

Prof. Richard P. Gangloff University of Virginia, USA (2007.1~2)

Dr. Veronique Doquet Ecole Polytechnique, FRANCE (2007∼)

Dr. Sergiy M. Stepanyuk
Paton Electric Welding Institute
of National Academy of Sciences
UKRAINE (2007.2.1~)

Prof. Dan Eliezer Ben Gurion University of The Negev, ISRAEL (2006.10.5∼10.15)

Dr. Brian P. Somerday Sandia National Laboratories, USA (2007.1~2)

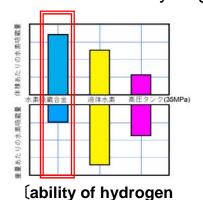
Prof. Petros Sofronis University of Illinois at Urbana-Champaign, USA (2006.6, 2007.1∼2)

Advanced Basic Technology for Hydrogen Storage Materials

Budget: 0.76 billion yen (FY2007)

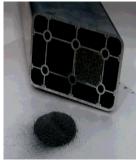
Project year: FY2007-FY2011

Establish compact and highly-efficient hydrogen storage/delivery technology through revolutionary performance improvements of hydrogen storage materials


Background

- Key for Hydrogen Society
 - = Establish of compact and high efficient hydrogen storage and delivery technology
- Technology of "hydrogen storage material (metal hydride)" as promising candidate Japan has world-leading technology
- Key issue is to attain a significant increase of adsorption capacity in hydrogen storage material

Project Policy


- Intensive R&D through close and flexible network of national laboratories
- Open the rise of new talent or new comers from different fields
- Collaboration with top class laboratories outside of Japan (ex. Los Alamos National Laboratory) in simulation technology

(High Energy Accelerator such as "J-PARC Project" would be used to analyze the structure of hydrogen storage materials)

storage materials

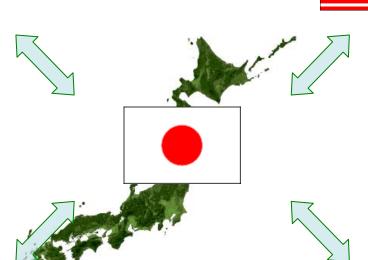
[hydrogen storage alloy]

41

(quantum beam lab. image)

Mr. Nikai, Ex-Minister of METI Visited to LANL (2006.8)

Global-Scale Collaboration for the Development of Fuel Cells


International Partnership for the Hydrogen Economy (IPHE)

- International cooperative framework for promoting technology development, standardization, and exchange of information concerning hydrogen and fuel cells
- Members: 17 countries/organizations, including Japan

Research Center for Hydrogen Industrial Use and Storage (HYDROGENIUS)

• Researchers get together from countries around the world, including the US, France, Ukraine, and Israel

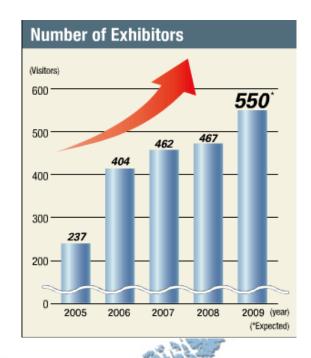
Polymer Electorolyte Fuel Cell Cutting-Edge Research Center (FC-Cubic)

• Exchange information with the Los Alamos National Laboratory

High-Performance Fuel Cell Project

Inviting foreign researchers

Advanced Research Project for Hydrogen Storage Materials


- Joint research with the Los Alamos National Laboratory
- Hold Japan-China Seminar on Hydrogen Storage Materials

The World's Largest FCEXPO

February 25 [Wed] - 27 [Fri], 2009 5th Int'l Hydrogen & Fuel Cell Expo FC EXP0 2009 第5回 国際 水素·燃料電池展 International Exhibition & Conference featuring all kinds of technologies, equipment and products related

to the R&D and manufacturing of

Fuel Cells & Hydrogen

Malaysia

Philippines

Singapore

Sri Lanka

 Taiwan Thailand

Viet Nam

List of FC EXPO 2008 Participants

Middle East Israel Saudi Arabia Breakdown of FC EXPO 2008 Visitors

76.2% of total visitors were decision makers with purchasing authority.

A large number of specialists including CEOs/Presidents, Directors, Managers and Cheif Engineers of fuel cell related companies visit FC EXPO every year. Exhibit at FC EXPO 2009 to conduct face-to-face business meetings with key buyers!

Hong Kong India 17.2% Republic of 23.8% President/ CEO. VP 23.6% 16.3% Director/ Assistant Manager Manager Senior Staff 19.1% Dept. Head/ Section Chief

FC EXPO

Bangladesh

China

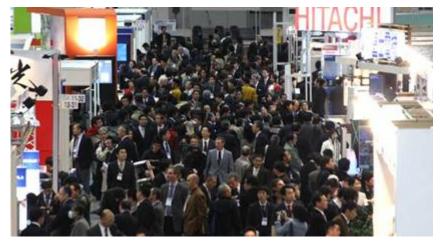
Brunei Darussalam

http://www.fcexpo.jp/

44

North/South America

Canada


Colombia

El Salvador

United States

Numbers of visitors:

2005 : 20,037 2006 : 23,039 2007 : 24,494 2008 : 24,617

Exhibitions of leading companies from Japan and abroad

JHFC Demonstration Project (Fuel Cell Vehicle)

Numbers of exhibitors:

2005 : 237 2006 : 404 2007 : 462 2008 : 467

Serious business discussions and technical consultations

FC EXPO Keynote session

"Samurais" have just begun battles toward the Hydrogen Economy

Big challenges to overcome

Limit of known methods:

Foreseeable innovations as "kaizen," "kanban," etc.

Closed, self-supporting innovation style

Huge amount of R&D costs

Circumstances:

Rapid innovations in competing technologies like hybrid-cars, heat pump systems

Uncertainty of new infrastructure

R&D challenges:

Drastic cost reductions

Degradation factors

Hydrogen storage

Durability, etc.

Self-sustaining innovations in integral architecture

- Collaborative activities in non- & pre-competitive areas
- Alliances with external enterprises
- Robust engineeringtechnology in manufacturing arena

Scientific breakthroughs and industrial application

- Basic mechanism
- Degradation factors
- Accumulations of scientific knøwledge
- Fusing disparate knowledge
 (Schumpeter's principles)

	2005	2010	2020
<u>FCVs</u>			
Cruise range [km]	300	400	800
Price compared to ICVs	x 20	x 3-5	x 1.2
Stationary FC			
Efficiency [HHV, %]	30	32	37
Durability [hour]	20,000	6-70,000	90,000
H ₂ price [Y/Mm ³]	150	80	40

Expansion from realistic niches

- Tech. marketing
- Mix & match of best modules
- Inversion of modules
- DC applications

"Destructive" innovation by ventures

- Unprecedented modules
- Unexpected synergies
- Bridge to integrated architecture

Outline of the Latest Document of the Industrial Structure Council (1) SIMETI

Resource constraints are internationally becoming severer (Demand growth, drastic rise in prices, conservatism in resource trading)

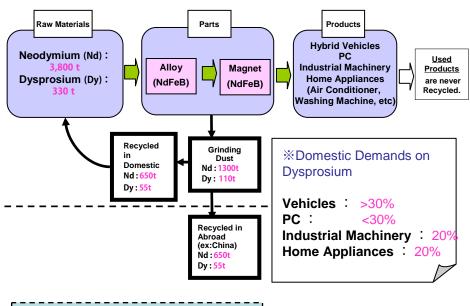
1337 1330 1333 Z000 Z001 Z00Z Z003 Z004 Z003 Z000 (year)

Source: Mineral Commodity Summaries

*The risk is eminent in "rare metal supply" which is indispensable with the production process of "High-Tech" commodities such as automobile, digital home appliance and other electronic devices

*Academic reports suggests the possibilities in the shortage of metal source by the year 2050.

Escalating Price of Natural Resources (Indium, Neodymium, dysprosium, etc) Compared the figures of 2002's to 2007's, prices are escalating by 4 to 8 times.


		Mar/2007	May/2007	%
Iron Scrap	US\$/t	73.9	273.3	370%
Aluminum	US\$/ka	1.4	2.7	196%
Copper	US \$/ka	1.6	7.4	459%
Lead	US\$/ka	0.5	2.2	441%
Indium	US\$/ka	85.0	710.0	835%
Nickel	US\$/ka	6.5	52.2	798%
Rare Earth (Neodymium)	US\$/ka	7.3	44.0	603%
Tungsten (Ore)	US\$/MTU(*)	35.3	165.0	467%
Rare Earth (Dysprosium)	US\$/ka	34.0	120.0	353%
Platinum	US\$/ka	16.517.7	41.465.5	251%

Bavan obo (China): Started production from mid 1980s 100,000 REO(t) Mountain Pass (U.S.): Out of production in 1998 80,000 60,000 China Pressure by Lower Price of China

Total Amount of Production of Rare Earth by Country

1303 1330 1331 1332 1333 1334 1333 1330

Material Flow of Neodymium/Dysprosium

The Industrial Structure Council is...

An official organization that responds to inquiries from the Minister of Economy, Trade and Industry on important topics relating to METI's policy, particularly improving the economic strength of the private sector and promotion of good international economic relations.

Outline of the Latest Document of the Industrial Structure Council 2 METI

Minimization of input by the reduction of production loss and consumption loss Maximization of the output from natural

Ultimate utilization and reduction in the consumption of natural resources

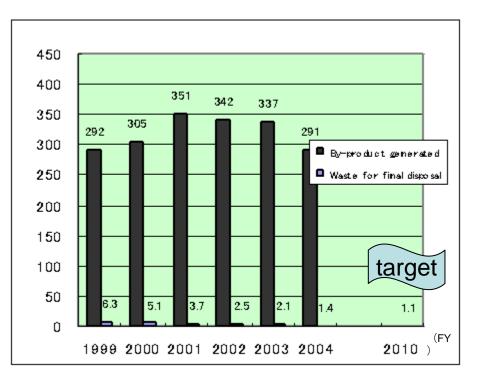
Achievement of "Most resource-efficient society in the world"

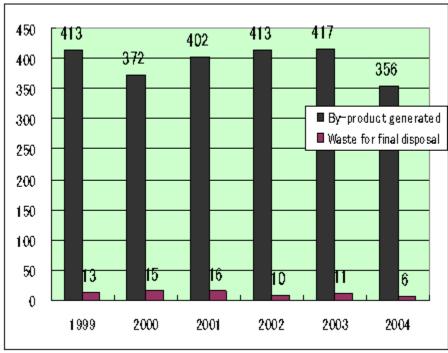
- Promoting the cooperation among whole industrial sectors in product life cycle
- Paradigm shift into "Green" production and social system reducing resources

"Green Supply-Chain"

 Integrated approaches with the national policies of stable Rare Metal supply, carbon reduction, and enhancement of industrial competitiveness

Generation of wastes in Automobile manufacturing / Car parts manufacturing




In the car part manufacturing (which is the middle-stream industry) as well as in the automobile manufacturing, promotion of the 3Rs contributes to the reduction in the amount of final disposal. But generation of wastes are bigger than that of the automobile manufacturing, and going sideways in recent years.

The amount of wastes and their final disposal generated in *automobile*manufacturing (Unit: 10 thousand ton)

The amount of wastes and their final disposal generated in *Car parts*manufacturing

(Unit: 10 thousand ton)

- According to estimates of the amount of direct and induced generation of industrial by-products using the input-output table, the transportation equipment (automobiles, etc.) manufacturers and electrical /electronic (home appliances/PCs, etc.) manufacturers produce a larger amount of induced generation of by-products than direct generation, as well as a large total amount of direct and induced by-products.
- OIt is assumed that there is much room to further curtail the generation of by-products in the process of production of products with a large supply chains through full optimization in collaboration between upstream/mid-stream firms and downstream firms.

Amount of direct generation • • • Amount of by-products generated by downstream firms

Amount of induced generation • • • Amount of by-products generated in the supply chain of the production of final goods, or in the process of raw materials and parts (upstream/mid-stream)

● Amount of direct/induced generation of by-products in different industries (FY2005)

	Induced (1) (Unit: ton)	Direct (2) (Unit: ton)	(1)/(2)
Precious machinery manufacturers	225,024	48,000	4.69
Other manufacturers	344,547	102,000	3.38
General machinery manufacturers (copier, etc.)	2,831,032	1,331,000	2.13
Electrical/electronic (home appliances/PCs etc.) (*)	4,423,768	2,706,000	1.63
Transportation equipment (automobiles, etc.)	7,211,252	5,422,000	1.33
Rubber products manufacturers	299,757	293,000	1.02
Printing/related businesses	541,445	536,000	1.01
Textile industry (dye/sorting)	192,994	195,000	0.99
Furniture/accessory manufacturers (metallic furniture/others)	71,443	102,000	0.70
Chemical industry	3,549,650	8,416,000	0.42
Ceramic/clay product manufacturers	321,296	772,000	0.42
Non-steel metal manufacturers	242,466	757,000	0.32
Plastic product manufacturers	585,150	1,843,000	0.32
Petroleum & coal product manufacturers	131,785	449,000	0.29
Steel industry	853,498	4,198,000	0.20
Pulp/paper/paper product manufacturers	748,714	5,796,000	0.13

Source: Estimates based on the survey on industrial waste and by-products with value (FY2005) and the 2005 Input-Output Table (Simple Extended Table/2000 Fixed Price)

"Greenising" of the Procurement Strategy (Reducing / Cost Down) and Strategy for next-gen. Automobiles

Reduce

Cost Reduction

Evolution of Japan's favorite Procurement

Further "Kaizen"

Next-gen. Strategy

Material-flow Management

< Possible Case >

- Transforming manufacturer's recent experiences to supplier's
- 3R and CO2 Optimization of materials / process (cutting, forging, casting, sinter, Molding, near-shape etc.)
- "Greenising" may become key point for further VA/VE activities and cost reduction

<Linkage to Rare Metal Strategy>

- High performance magnet contained Nd/Dy and alternative materials
- lithium battery electrode contained Li, Co, Mn/Fe related and alternatives
- Reduction/ Substitute (Pt/Rh/Pd/Ru)

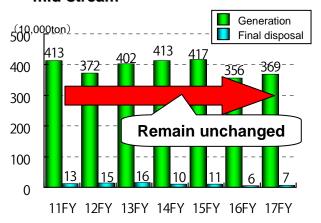
<Fuel Cell>

<Successful Experiences
in other industries>

Canon: reduce of glass sludge by 80%

NITTO DENKO: reduce the negative product by 2/3

Tanabe Pharma: change sludge treatment which contributes to decrease maintenance fee, energy saving, CO2 reduction.


• These successful MFCA experiences of other industries may contributes to further cost reduction.

Cost Reduction / Future Strategy / International Competitiveness "Greenising"

Strengthen industrial competitiveness by resource-saving design & manufacturing ("New Suriawase version 2.0")

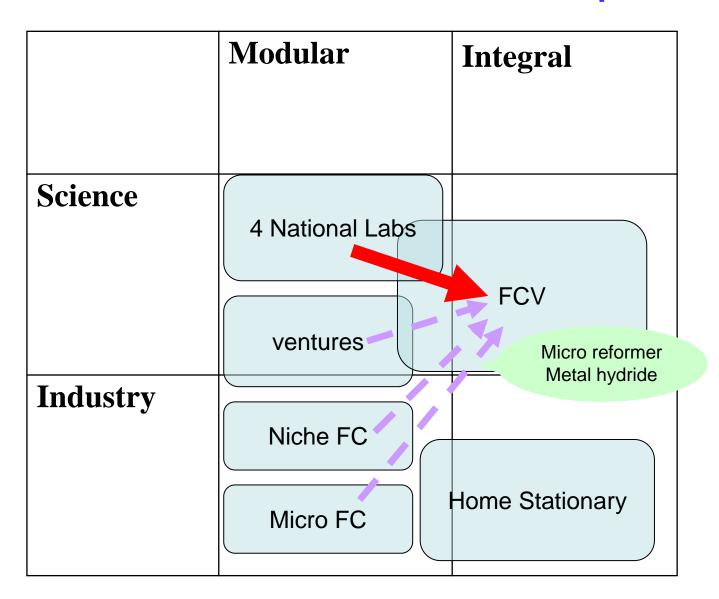
- There are much resource losses in the integral manufacturing industry where Japan has competitiveness. The tough industrial structure is necessary that is not negatively affected by price rises of resources like the rare metals which are indispensable for next-gen. cars (plug-in-hybrids etc.).
- The actions of Japanese companies who seek high qualities promote more generation of resources losses as a result.
 (The reduction of losses is limited by the designs and specs of downstream companies
 / Process yield becomes unintentionally lower by severe demand of quality)
- Fourfold effect of resource saving / energy saving / CO2 saving / workload reduction (= cost cut) can be realized by downstream companies' considering resource losses in all stages of supply-chain including the upper stage thorough resource conserving manufacturing.
- Only several pioneering companies have begun to tackle with these resource conserving manufacturing, which does not be generally done by Japanese companies because it may not lead to short-term profit of them.
- By improving related systems, competitiveness of Japanese industry should be increased by "Power of New Integration (Suriawase version 2.0)" again through resource conserving.
- Examination of a legal system to obligate downstream companies to design and procure with consideration of loss reduction in the process of the upstream and mid-stream companies. (For example : cars, home appliances, copying machines)
 "Visualization" of the outputs by the creation of excellent examples.

Resource losses in upstream and mid-stream

Examples of pioneering companies

TOYOTA

Promoting lightweighting by review of the raw materials and part designs in cooperation with makers of materials and parts. Realizing improvement of the mileage and CO2 saving by the lightweighting.


Ricoh

Reviewing the product designs which promote environmental load reduction in the part production. (carrying it out in 50 companies, spreading it in about 200 companies in the future).

Examples of reducing losses with resource-conserving manufacturing

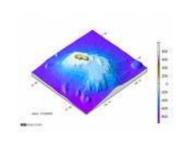
Architecture and Innovation phase

Options and Progress so far

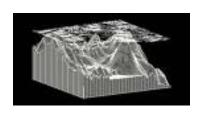
HYDROGENIUS	AAA+	Superb	
Home PEFC	AAA	Very Excellent	
Home SOFC	AA+	Promising	
FCV	AA	Good; To be improved	
Hydrostar	AA	Just started	
HiPerFC	AA	Just started	
FC-Cubic	A+	Last spurt?	
Micro FC	A+	When Products?	
Ventures	A-	Waiting new star	
RMFC	В	New team?	
Niche	В	New team? 54	

Innovation management

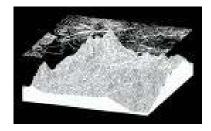
Key words


- Passion
- Mission
- Options
- Competition
- Persistency
- Architectural Design
- Open Innovation
- Science-Industry Bridge
- Tangible target
- Samurai Spirit

Role of Government


- National Focus
- Super neutrality
- Encouragement
- Stubborn support
- Empowerment
- Fair Battle field for competition
- Salon for exchange of information and passion
- Budget allocation (inferior)

Value Landscape incessantly changes under modular economy



"Der Tag ist Schön auf jenen Höhen."

References

- "Design Rules: Power of Modularity" (C. Baldwin et al., MIT Press, 2000)
- "Mojuru-ka" (Modularity: the Nature of New Industrial Architecture) (M. Aoki, H. Ando et al., Toyokeizaishinposha, 2002)
- "Nihonkeizai Kyosoryoku no koso" (Japan's Economy and vision for competitiveness: Modular architectural strategy to challenge in new era of speed) (H. Ando et al,. Nihonkeizaishinbunsha, 2002)
- "Nenryodenchi Kaihatsu to Mojuru-ka (R&D of Fuel Cells and Modularity)", Akamon Management Review, AMR 5-9, 2006
- "Nenryodenchi Kaihatsu to Architecture (R&D of Fuel Cells and Architecture)", *Nenryodenchi Jituyoka heno Chosen* (Fuel Cells: Challange for Commercialization) (A. Tsutsumi et al,. Kogyochosakai, 2007)