Role of Electrolyzers in Grid Services

Rob Hovsapian
Manager – Power and Energy Systems
Idaho National Laboratory
• Current activities - role of hydrogen refueling stations in the electricity grid and renewable energy assimilation
• H2@Scale has a longer term vision with potential benefits of hydrogen to the energy nexus
Relevance & Objective

• **Relevance:** Electrolyzer model validation and simulation in a distributed real time environment that is used for electrolyzer based fueling station business case analysis (California focus)

• **Objective:** Validate the benefits of hydrogen electrolyzers through grid services and hydrogen sale to fuel cell vehicles for full-scale deployment.
 – Characterization of the potential and highest economic value based on the needs of multiple stakeholders for specific grid regions.
 – Demonstration of the reliable, fast-reacting performance of hydrogen-producing electrolyzers for at-scale energy storage devices.
 – Verification of the communications and controls needed for successful participation in electricity markets and DR programs and ancillary services, leading to additional revenue and reduced hydrogen production cost.
Electrolyzers, Renewables, and Power Grid

- Grid modeling: Utility distribution network identification and modeling in Real Time Simulator for present case
- Electrolyzer operation: Interface development between electrolyzer and Real Time Simulator to perform Power-Hardware-In-the-Loop (PHIL) model validation
- Utility/Aggregator involvement to provide real world test conditions
- Economic analysis: Operations optimization to calculate maximum revenue
 - Compare revenue to costs to determine competitiveness
 - Based on
 - 2015 Utility rate and/or CAISO nodal price (region, connection, operation strategy)
 - 2015 California renewable profiles (PV or wind)
 - Hydrogen production capacity factor (80, 90, or 95%)
Electrolyzers and Response Metrics for Grid Services

Time response and level of variation in power consumption of 120 kW stack electrolyzer at NREL

- Response time to a change in power set-point (electrolyzer demonstrated to be milliseconds)
- Settling time after a set-point change (electrolyzer demonstrated to be milliseconds)
- Duration possible for a change in power consumption (electrolyzer demonstrated to be unlimited)
- Turndown level (electrolyzer demonstrated to have a 10:1 turndown capability)
- Startup and shutdown time (electrolyzer demonstrated to start and stop in less than 30 seconds)
Experimental Setup

Real Time Digital Simulator (RTDS) enables communication, control, and experimental operation between grid modeling, Front End Controller (FEC), electrolyzer system, and economic benefit evaluator.
Electrolyzer node voltage phasor information

Current drawn by electrolyzer from interfaced node

UDP/IP communication

PG&E grid and EMS

RTDS

INL

NREL

Front end controller

Reference DC current command

DC current feedback

Firing pulse

Low Level Controller

Controllable rectifier

Electrolyzer

Grid emulator

Power adjustment signal from EMS

Analog voltage control signal

Measurement feedback

DC power

NREL Low Level Controller

Firing pulse

Controllable rectifier

Electrolyzer

Grid emulator
Remote electrolyzer operation over 200 hour test period shows electrolyzer’s ability to participate in grid support market

Four distinct profiles were used to characterize the electrolyzer response to remote commands

1. **Ramp Up, Ramp Down** → variations in increasing or decreasing load steps
2. **Load Steps** → variations in the size of change
3. **Utility Demand Response** → expected performance of electrolyzer in grid application
4. **Random Variations** → variations in the speed of change

Sample utility Demand Response time series data (PG&E E-20 profile) used to remotely control the electrolyzer over ~7 hour window 8 March 2016.

|steady state error| < 1%
Types of tests run to achieve 200 hours

- Ramp Up, Ramp Down
- Load Steps
- Utility Demand Response
- Random Variations

Test Hours vs. Date:
- 31-Jan
- 10-Feb
- 20-Feb
- 1-Mar
- 11-Mar
- 21-Mar
- 31-Mar
Summary of Electrolyzer Characterization Testing

Fast response time & quick slew rate

<table>
<thead>
<tr>
<th>Performance Metric</th>
<th>Ramp</th>
<th>Load</th>
<th>DR</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Time</td>
<td>< 1seconds</td>
<td>< 1seconds</td>
<td>< 1seconds</td>
<td>< 1seconds</td>
</tr>
<tr>
<td>Settling Time</td>
<td>< 1seconds</td>
<td>< 1seconds</td>
<td>< 1seconds</td>
<td>< 1seconds</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>+1 kW/second, -1 kW/second (Other rates were 0.5 and 2 kW/second)</td>
<td>Predetermined load values at variable times</td>
<td>10 kW, 20 kW, 30 kW, 40 kW, 50 kW, 118 kW, & E-20 DR (PG&E) at 2, 5, and 10 minutes interval</td>
<td>Random set-points between 13 & 118 kW per second</td>
</tr>
<tr>
<td>Operational Limits</td>
<td>13 kW to 118 kW</td>
</tr>
<tr>
<td>Startup and Shutdown Time</td>
<td>30 seconds and < 1 second</td>
</tr>
</tbody>
</table>
Electrolyzer model developed in RSCAD and validated against 120 kW stack using RTDS simulations

- Temperature
- Membrane Thickness
- Membrane Conductivity
- Exchange Current Density
- Charge Transfer Coefficient

Theoretical parameters used to model stack voltage

Collect empirical data on 50-cell PEM stack

Develop balance of plant model in RSCAD using theoretical equations

Match empirical and theoretical results using curve fitting to derive parameters

Compare time-series results from PEM stack and model using INL RTDS test protocol

Polarization curves showing model and actual results at varying temperature and pressure

Time-series results showing actual and model performance
Front End Controller & Electrolyzers

The project combines modeling, simulation, and hardware for the validation of system performance and to quantify economic benefit based on different operation scenarios relevant to utilities.
FEC consists of three modules:

1. **Communication module**
 realises data exchange between FEC, utility, and electrolyzer’s low level controller

2. **Optimization module**
 computes set point for electrolyzer operation that optimizes the revenue of the hydrogen refueling station

3. **Interpretation module**
 generates the reference control signal in order to ensure that the low level controller properly integrates with the FEC
FEC Inputs/Outputs

Front End Controller adds greater ‘awareness’ and hence ‘better response’

FAST LOOP (VOLTAGE AND FREQUENCY STABILITY)
- Vrms
- freq
- Pressure
- Temperature
- Maximum Power
- Actual Power
- Power set point (Optimal or Programmable)

SLOW LOOP (ECONOMICS AND USER DEMANDS OPTIMIZATION)
- Storage Pressure (SOC)
- Energy Pricing (Programmable or Time of the day forecast)
- Hydrogen Demand (Programmable or forecast)
- Programmable Hydrogen Price

Outputs
- Idc – Rectifier (Power control pilot)

Inputs
- DR override (Utility Control)
- User override (Programmable fields or Programmable Power output)
• Several current and future locations of the hydrogen refueling stations are generated from earlier NREL studies
• Network synthesis and modeling in real-time simulator at INL, represents the PG&E infrastructure
• It spans major distribution and coupling transmission lines (from 69 kV to 138 kV) associated with the hydrogen refueling infrastructure
• Serves as a testbed for testing grid services and stability of connecting electrolyzers in utility systems
• Centralized and distributed electrolysis is assessed under different grid and market conditions
Impacts of Electrolyzer on Power System Transient Stability

Demonstration of reduction in transients created from faults with electrolyzers in the grid

Two Line to Ground Fault

Three Line to Ground Fault

Resistive Capabilities and Impacts on the Grid
Multiple electrolyzers controlled by FEC can enhance overall grid stability by limiting frequency excursions.
Multiple electrolyzers controlled by FEC can enhance overall grid stability by limiting voltage excursions.

Fault location: Node 39
Fault type: Three phase balance
Fault duration: 0.1 seconds

Node 39:
- Error Magnitude:
 - 0.962
 - 0.989
 - 0.999

Node 40:
- Error Magnitude:
 - 1.003
 - 0.989
 - 0.999

Node 32:
- Error Magnitude:
 - 1.003
 - 0.989
 - 1
Electrolyzers controlled by FEC can enhance grid stability by limiting frequency excursions.
Voltage Support by Centralized Electrolysis

Electrolyzers controlled by FEC can enhance grid stability by limiting voltage excursions.
First use of grid simulator capability at ESIF to control the electrolyzer power supplies

- Demonstration of a major power hardware-in-the-loop capability for NREL
- Control via remote command from INL RTDS and safety limits verified
Variability of Renewable Energy Sources

- Renewable Energy sources such as wind and solar demonstrate high degree of time dependent variability i.e., seconds to minutes to days...
- Electrolyzers have an innate capability to respond in seconds to follow control set points
- How can electrolyzers offset the variability observed by the power?
 - Grids expected predictable and non-varying generation sources
 - Hydrogen demands per day for different years are used as a constraint
2018 Case with 7,200 FCEVs

- Objective: Offset time-dependent, aggregated variability of solar and wind power using electrolysis
- Total of 13 MW electrolyzer plant is used for this example
- 2018 test case projections from ARB on vehicle fuel use to generate 1,800 kg/day of hydrogen for 7,200 FCEVs
- Approximate fuel dispensed in Santa Clara, Sacramento, San Francisco, Marin, Contra Cost and Alameda county
- Total energy consumed to generate this hydrogen demand 90.28 MWh/day
- Advanced control of a 13 MW electrolysis plant to offset variability of wind and solar power.

- A fixed and predictable power injected into the grid from solar and wind plant due to coordinated operation with electrolyzers.
• Objective: Offset time-dependent, aggregated variability of solar and wind power using electrolysis
• Total of 45 MW electrolyzer plant is used for this example
• Typical efficiency of PV ~20-30%
• 2022 test case is used as reference to generate 7,575 kg/day of hydrogen for 43,600 FCEVs
• Approximate fuel dispensed in Santa Clara, Sacramento, San Francisco, Marin, Contra Cost and Alameda county
• Total energy consumed to generate 330 MWh/day
Wind, Solar, and Electrolysis

- Advanced control of a 45 MW electrolysis plant to offset variability of wind and solar power
- A fixed power injected into the grid from solar and wind plant due to coordinated operation with electrolyzers

Electrolyzer performance to generate 7,575 kg/day of hydrogen (2022)

Total feed in the grid (2022)
Future Work

• Hardware implementation and integration of FEC with the electrolyzer stack at NREL
• Successful verification and validation of the FEC functionalities of providing grid services as requested
• Renewable energy integration and smoothing based on the controllability aspects of electrolyzer and the FEC
• Quantification of the value of hydrogen refueling stations in renewable integration
• Role of hydrogen refueling stations in grid stability, flexibility, and participating in various demand response scenarios
Summary

- Verifying and validating the participation of electrolyzers (hydrogen refueling station) in providing grid services
- First of a kind, distributed real-time simulation with PHIL (electrolyzer) between INL and NREL
 - FEC and electrolyzer responding to grid signals and providing required services
 - Extensive 200 hours (FY 2016) and 300 hours (FY 2017) of testing completed
- Electrolyzer stack efficiency and hydrogen quality is ensured to be acceptable during the whole project
- Improved transient stability observed under grid fault conditions verified with PHIL
- Hardware realization of FEC and its integration with the electrolyzer stack is under progress
- **Contributes directly to the DOE Milestone 3.9 related to Systems Analysis & Technology Validation**
 - [From MYRDD 3.9] Validate large-scale system for grid energy storage that integrates renewable hydrogen generation and storage with fuel cell power generation by operating for more than 10,000 hours with a round-trip efficiency of 40%. (4Q, 2020)
Thank you
Backup Slides
• Peak capacity management
 – deploying fleets of electrolyzers to consistently and reliably reduce critical peak loads within a defined region or location on the grid

• Energy market price response
 – fleets of electrolyzers consume energy when prices are low and defer consumption (set energy free) when prices are high

• Regulation
 – operating point adjustment counteracts short-term changes in electricity use that might affect the stability of the power system

• Spinning Reserve
 – by reducing its power consumption fleets of electrolyzers can support the event when loss of generation unit in the grid occurs
• Ramping
 – analogue to generator, fleets of electrolyzers start and stop on command, while the “ramp rate” is the rate at which they can increase or decrease consumption

• Artificial inertia
 – fleets of electrolyzers regulate active power consumption in response rate of change of frequency

• Distribution voltage management
 – upon detecting the voltage deviations (self-sensing and/or receipt of external measurement signals) fleets of electrolyzers adjust the net load in the form of their reactive and/or real power components

• Autonomous grid service responses
 – additional (high-level) controller enables grid services in “stand-alone” mode
• Purely resistive load, supplied from a DC source (power converter)

• Very high rate of change and flexibility in setting power operating points

• Capable of sensing deviations in power systems, capable of adjusting their operating points to support the grid (fleets of electrolyzers)

• Frequency and voltage support by reducing/increasing power consumption
• High-level controller (Front-end controller)
 – applies EMS requirements and supports power quality by varying the electrolyzer’s operating point

Energy Management System / Distribution Management System

FEC: Front-end controller
LLC: Low level controller
PEI: Power electronics interface

Smart meter
Electrolyzer
Power Flow
Distribution network