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@ JENERGY Next Generation Nuclear Plant (NGNP)
Nuclear Energy Mission and Program Objectives

Mission: Demonstrate high-temperature gas-cooled reactor (HTGR)
technology to produce electricity and high temperature process heat

Program Objectives

B Partner with industry to commercialize
HTGR technology

B Collaborate with the Nuclear Regulatory
Commission (NRC) to establish a
licensing framework for HTGRs

B Draw upon the national laboratories,
universities, and international community
to perform the Research and
Development (R&D) necessary to
decrease the technical risk
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NGNP - Features and Characteristics

Nuclear Energy

= Helium cooled — noble gas does not
chemically react

= High outlet temperature — 750°C or greater
for high energy conversion efficiency and
process heat uses

= Coated particle fuel — excellent fission
product retention under operating and
accident conditions

= Passive safety features — ensure public
health and safety

= Small to medium power output — good fit
for industrial applications

= Improved fuel utilization — up to three times
the burnup of light water reactors
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PENERGY Key to HTGRs - Tri-Structural Isotopic
Nuclear Energy (TR'SO) Fuel

Pyrolytic Carbon
Silicon Carbide
Uranium Dioxide or Oxycarbide Kernel

Particles Compacts Fuel Element

TRISO-coated fuel particles (left) are formed into fuel compacts
(center) and inserted into graphite fuel elements (right) for the
prismatic reactor
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CORE

Matrix

Buffer Layer 5 mm Graphite Layer

Coated Particles Embedded
in Graphite Matrix

| -+ Fuel Sphere Half
Fuel-Free Shell SiCTCaeyrery f Dia 60 mm Section
Fueled Zone Outer PyC-Layer

PEBBLE
CORE

TRISO-coated fuel particles are formed
into fuel spheres for pebble bed reactor
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NGNP PROJECT STATUS
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NEAC Review of NGNP Phase 1

B EPAct mandated review by Nuclear Energy Advisory
Committee (NEAC) prior to proceeding to Phase 2

B NEAC Report forwarded to Congress — October 17, 2011

B DOE Response
e Continue Phase 1 R&D
e Postpone initiation of Phase 2 design activities

e Continue to engage NRC to ensure regulatory framework is in place
to support commercialization of this technology

e Work to establish public-private partnership
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NUCLEAR HYDROGEN
PRODUCTION R&D
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High Temperature Steam Electrolysis

Accomplishments

i I(T_IS_‘I_DSE? cell & stack manufacturing for high temperature steam electrolysis

® 1080-hour 15 kW integrated laboratory scale operation at Idaho National
Laboratory.

Small-Scale Test Area at INL Integrated Laboratory-Scale
Experiment (>5,000NL/h, 15kW) at INL
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Overview of Project Activities (FY12)

Pressurized Test

B Pressurized operation of 10-cell advanced technology stack at 1.5 MPa
e Required development of completely new test apparatus
e Upgrading of laboratory gas delivery systems to allow for pressurized operation

4 kW Test

B Demonstrate HTSE at 4kW scale for 1,000 hours with advanced technology,
internally manifolded, electrode-supported cells

e Required modification of test stand for higher flow rates and heat recuperation
Small-Scale Testing, Advanced Technology Cells and Stacks

B Continue testing and characterization of advanced cells and stacks with a focus
on performance (initial and long-term)

Analytical and Modeling Activities

B System analysis of biomass pyrolysis process for distributed production of
synthetic crude / liquid fuels

B Economic analysis of distributed hydrogen production from HTSE

10
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Test Stand

Machine screw
jacks

Pressure
vessel

Cutaway view
of hot zone

Test
fixture

Bottom flange

Support
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Nuclear Energy Pressurized HTSE Test

Pressure Relief Valve

Pressure Vessel
Test Stand

Cooling Coils

Cells Stacked

Heated Container

Gas Lines —/

Electrical Input
R TpH Instrumentation

Wire

Compression Springs
Alumina Tube

Ceramic Insulator
Aligment Plate
Top Electrode Plate

Cell Stack

Instrumentation Wires
Lower Electrode Plate

Coiled Tubing for
Inlet Gases
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NGNP / HTSE Conceptual Design

NGNP Concept for Large-Scale Centralized Nuclear Hydrogen
Production based on High-Temperature Steam Electrolysis
M Direct coupled to HTGR reactor for electrical power and process heat

B 600 MWth reactor could produce ~85 million SCFD hydrogen (similar to a large
steam methane reforming plant) and 42 million SCFD oxygen

B Potential applications include petroleum refining, o R RRAEEE
ammonia production, RN -
synthetic liquid fuels, S
hydrogen as a somaon 1w RN e
direct vehicle _—
fuel PR g e
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* Idaho National Laboratory—Membranes, catalyst testing

« Argonne National Laboratory (ANL)—Alternates cycles
(Ca-Br), flowsheet analysis SO, electrolysis

« Oak Ridge National Laboratory (ORNL)—Inorganic
membranes, materials

- Sandia National Laboratories (SNL)—Sulfur cycle
development/testing, membranes, materials, heat
exchanger development

« Savannah River National Laboratory (SRNL)—hybrid
sulfur cycle development

« General Atomic (GA)—Sulfur lodine Development

* Universities—process development, materials testing

15
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Decomposition

Chemical
Reactions
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lodine
Cycle

Heat
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Thermochemical R&D:
Sulfur — lodine Cycle

HI,

Bunsen Reaction
Products (for Sl)

Integrated Laboratory-Scale
Experiment (60 NL/h) at GA

Sulfuric Acid
Decomposer (~900°C)

17



S50 U.S. DEPARTMENT OF

©ENERGY

Nuclear Energy

Thermochemical R&D:
Sulfuric Acid Decomposer

catalyst

12 inch ruler
(305 mm)

Outer SiC tube

Quartz baffle

Inner SiC tube

Teflorf manifold

Steel block

Sulfuric Acid
Decomposer (~900°C)
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SO, Depolarized Electrolysis

Hybrid-Sulfur

Baseline SRNL approach:
(1) H,80,—H,0+3S0, +1/20, Anolyte consists of SO,
(2) 2H,0+30,—»H,SO, +H, dissolved in concentrated

sulfuric acid
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Hybrid Sulfur Chemistry

H2804 <> Hzo + SOZ + %02 SOz + 2 Hzo — H2804 + H2
(thermochemical; 800-900 C) (electrochemical; 80—120 C)

Net Reaction: H,O — H, + 720,

Sulfur Dioxide Depolarized Electrolyzer (SDE)
Anode Reaction:

SO, + 2H,0 — H,SO, + 2H* + 2e- E,=-0.158 V
Cathode Reaction:
2H* + 2¢¢ —» H, E, = 0.000 V

Net Reaction:
SOZ + 2H20 —> H2$04 + H2 EO - - 0.158 V

20
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Cu-CIl Hybrid Thermochemical Cycle

Accomplishments

B CuCIl/HCI electrolyzer operation demonstrated by AECL.
M Lab-scale non-electrolysis steps successfully performed in 2011 by Canadian

program.

-

Electric Energ
Eln::trnchnmlcal '

Heat Reaction

Chemic?"
Reactio™

AECL — Atomic Energy of Canada, Ltd.
UOIT—University of Ontario Institute of Technology

WATER + HEAT

Hydrolysis
(at UOIT)

Decomposition

(at UOIT)
Drying
B (at UOIT)
Note: Auxiliary
processes at UOIT

not shown
Electrolysis HYDROGEN
(at AECL)
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Alternative Cycles Lab Work

— Hybrid Ca-Br — Argonne National Lab - 45%

« CaBr, + H,0O(g)
« CaO +Br,
« 2HBI(9g)

CaO + 2HBr
CabBr, + 20, (g)

H» + Br, (9)

— K-Bi — Penn State University

+ 0.3K,Bi+H,0(g) =
. KOH(I) + 0.3 Bi -

KOH(l) + H, (g) + 0.3 Bi
.50,(g) +0.5H, (g) + 0.3 K;Bi

— Mg-I — University of South Carolina - 45%

* 6MgO + 1, (s) = Mg(10y), (s) + SMgl, (aq)
» Mg(l10;), (s) = MgO+1,(9)
« 5Mgl, + 5H,0(g) = 5MgO + 10 HI(g)
* 10 HI (g) = SHy(g) + 51,(g)
— Hybrid Cu-Cl— ANL - 42%
. 2Cu + 2HCI(g) —  2CuClI (I) + H,(g)
» 4CuCl —  2CuCl, + 2Cu
+ 2CuCly(s) + H,0(g) —» CuOeCuCl, (s)+ 2HCI(g)
+ CuOeCuCl, (s) —  2CuCl(l) + %0,(g)

— Hybrid Cl - Clemson University - 34%

» Cl2(g) + H20 (g) =
« 2HCI (g) =

2HCI (g) + %02 (g)
H2(g) + Cl2(g)

— Cu-SO, Tulane University - 52%

. CuO +S02(g) + H20 =
+ CuSO4 =

Cu SO4 + H2 (g)
CuO + S02 (g) + 402 (g)

750 C
550 C
25C

575 C
575C

150 C
600 C
400 C
500 C

450 C
25C
400 C

550 C

850 C
75 C

25C
850 C
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Thermochemical NERI Projects

- S-1 Thermo-Physical Measurements
- Mark Thies
- Clemson University
- SO2 and HBr Electrolysis Studies
- John Weidner
- University of South Carolina
- S-1 Modeling Studies
- Shripad Revankar
- Purdue University

23
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International R&D Cooperation

Nuclear Energy

B Generation IV International Forum (GIF)
Very High Temperature Reactor (VHTR) Hydrogen
Production Project

B Project arrangement in force since 2008
B 7 current members

CA, FR, JP, KR,
RN e

24
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International Sulfur lodine Cycle R&D

Accomplishments

B Lab-scale(1NL/h) test at Japan Atomic Energy Agency (JAEA).
M Bench-scale(30 NL/h) test at JAEA.

B “Semi-Integrated” lab-scale operation at elevated pressure by SNL, GA, &
Consumer Electronics Association (CEA) in 2008; at JAEA in 2014.

Lab- Scale (1 NL/h) Bench-Scale (30 NL/h) Integrated Laboratory-Scale
Test at JAEA Test at JAEA Experiment (60 NL/h) at GA

25
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SUMMARY
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NGNP and Hydrogen Path Forward

m Continue R&D in HTGR fuels, materials and code validation
experiments

m Continue licensing efforts with the NRC

B Continue contract with industry to develop economic/business
analyses regarding commercializing HTGRs, and to provide data
and analysis to DOE that could inform DOE on R&D efforts

B NE-RE Hybrid Energy Study looking at future options for
incorporating high temperature hydrogen production once
HTGRs are available

27
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