International Energy Agency (IEA)/International Partnership for the Hydrogen Economy (IPHE)

“Building the Hydrogen Economy: Enabling Infrastructure Development

Investigate the global infrastructure requirements for a hydrogen economy

International Partnership for the Hydrogen Economy (IPHE)

Joint project to compare and contrast the EU HyWays and US H2A and GREET models
Objectives:

- Convene public and private sector officials in an international strategic dialogue to refine and evaluate infrastructure transition planning scenarios for building out the hydrogen economy.
- Inform policy makers of opportunities to effectively advance these transition scenarios and to plan policy instruments.
- Using a portfolio of models and proven tools, quantitatively analyze hydrogen economy scenarios and market transformation planning for the world out to 2050.
Plan:

• Hold three (3) workshops throughout the world
 – North America
 – Europe/Africa
 – Asia and Pacific Rim

• Convene public and private sector officials in an international strategic dialogue
 – Organize into breakout groups to discuss and identify key technical, institutional, financial opportunities and challenges for hydrogen infrastructure development
 • Mobile application group/s
 • Stationary and distributed power generation group/s
 • Modeling and analysis of hydrogen technology and infrastructure development group

• Prepare and issue a report
IEA/IPHE Project

Progress:

- Two workshops held in Detroit (North America) and Paris (Europe/Africa)
 - Workshop themes of North America and Europe/Africa
 - Planning and Design
 - What are the likely pathways for hydrogen infrastructure development?
 - What policy and market mechanisms and opportunities will have the greatest impact?
 - Construction and Engineering
 - What are the most significant technical, financial and institutional issues and barriers to engineering and construction of hydrogen infrastructure?
 - What policy and market mechanisms and opportunities can best address engineering and construction issues and barriers?
 - Operations and Maintenance
 - What are the most significant foreseen challenges to operating and maintaining hydrogen infrastructure?
 - What are the prospective policy, market and technology solutions to operating and maintaining the infrastructure?
 - North America workshop was held in April 2007
 - Europe/Africa workshop was held July 11 and 12, 2007

- Third workshop will be held in Shanghai (Asia and Pacific Rim) on October 24 and 25, 2007
IPHE Project

IPHE HyWays/US Model Comparison Project
IPHE Project Objectives

- Compare roadmapping and system analysis activities in Europe and USA (+other IPHE partners)
- Improve understanding about the ongoing activities (common language, mutual understanding, alignment of int’l approaches)
- Compare
 - Modeling approaches
 - Pathways that are relevant in each region
 - Basic technical and economic assumptions
 - Hydrogen pathway analysis results
 - Infrastructure analysis results
- Involve stakeholder consultation
- Institutional and personal exchanges
- 24 month project (Oct 2006 – Oct 2008)
WP1 (Project Management)

WP2 (WtW) → WP4 (HyWays IPHE liaison)

WP3 (Other Models)

Dissemination and exchange of jointly developed understanding to other IPHE members

Public

Compare WtW modeling methodologies and assumptions (EU: E3database / U.S.: H2A, HDSAM 1.0, GREET 1.7) by benchmarking (Months 1-12)

Compare further models and approaches (infrastructure, resources, in-depth technology analysis, stakeholder consultation)
Models being Compared in WP2

- **E3database (EU)**
 - Models hydrogen production and delivery pathways including scenarios, costs, and WTT and WTW energy and emissions

- **H2A Production (US)**
 - Financial calculation model with case studies available for different hydrogen production technologies

- **HDSAM 1.0 (US)**
 - Delivery-scenario model that calculates capital and operating costs for scenarios based on general inputs defined by the user

- **GREET 1.7 (US)**
 - Greenhouse-Gas, energy, and emissions tool that calculates WTW energy and emissions
Pathways being compared in WP2

1. 2007 – onsite SMR – FS
2. 2007 – onsite grid-mix electrolysis – FS
3. 2007 – central (regional) biomass gasification – pipeline – FS
4. 2015 – central SMR – LH2 truck – FS
5. 2015 – central SMR– pipeline FS
7. 2015 – central coal gasification (CCS) – pipeline – FS
8. 2030 – central SMR (CCS) – pipeline – FS
9. 2030 – co-production of H2 and electricity (IGCC) with electricity credit – LH2 truck– FS

Comparisons have begun for pathways in red

Legend:
FS – Fueling Station
SMR – Steam Methane Reformer
LH2 – Liquid hydrogen
CCS-Carbon capture and sequestration
Important Differences

Financial Parameters

<table>
<thead>
<tr>
<th></th>
<th>H2A & HDSAM</th>
<th>E3database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financing</td>
<td>100% Equity</td>
<td>100% Debt</td>
</tr>
<tr>
<td>Taxes</td>
<td>35% Federal</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>6% State</td>
<td></td>
</tr>
<tr>
<td>Working Capital</td>
<td>15%</td>
<td>0%</td>
</tr>
<tr>
<td>Depreciation</td>
<td>MACRS</td>
<td>Straight Line</td>
</tr>
</tbody>
</table>

Resulting Cost + Return is greater in H2A & HDSAM
Important Differences

Production Analyses
• Expected differences
 – Capital costs
 – Biomass price
 – Utility prices
• Notable differences
 – Biomass conversion efficiency
 • E3 Data base efficiency (65%) is higher than H2A (45%)
 – Coal conversion efficiency
 • H2A efficiency (60%) is higher than E3 Data base (44%) for the near term case

Energy and Emissions Analyses
• Well-to-Tank (WTT) and Well-to-Wheels (WTW) analyses are being compared

Delivery Analyses
• Different modeling philosophies
 – HDSAM 1.0 designs a delivery scenario
 – E3database has a single chain for analyses without specific regionality (i.e., a single station with transport distances input by the user)
• US uses a lower vehicle fuel efficiency than EU
 – US uses 57.5 miles / kg vs. 0.365 kW h / km
 – EU uses 89 miles / kg = 0.235 kW h / km
 – Due to differences in vehicle size, driving cycles, and estimation method
• Pipeline architecture (rings in HDSAM 1.0 vs. star in E3database)
• Dispensing pressure
 – H2A is 5,000 psi
 – E3 Database/EU is 10,000 psi
Conclusions

• The project is underway to compare analysis approaches and models of the EU & US
• Developing a common understanding and language is challenging
• Financial parameters and technical parameters may need to be adapted to different world-regions
Thank You

For More Information

Systems Analysis

Fred Joseck
(202) 586-7932
fred.joseck@ee.doe.gov