XVI. Project Listings by State

Alabama

V.B.2 CFD Research Corp.: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization .. 711

Alaska

VIII.9 Tanadgusix Foundation: TDX Foundation Hydrogen Project/PEV Project ... 1288
VIII.9 TDX Power: TDX Foundation Hydrogen Project/PEV Project ... 1288
VIII.9 Alaska Center for Energy and Power: TDX Foundation Hydrogen Project/PEV Project 1288

Arizona

II.C.3 Arizona State University: Zeolite Membrane Reactor for Water-Gas Shift Reaction for Hydrogen Production ... 67
V.D.10 University of Arizona: Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes .. 786
V.D.10 Arizona State University: Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes .. 786
VI.5 Arizona State University: Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture .. 1144

Arkansas

II.G.11 University of Arkansas, Little Rock: Photoelectrochemical Generation of Hydrogen 182
II.G.13 University of Arkansas, Little Rock: Photoelectrochemical Generation of Hydrogen from Water Using Visible Light Sensitive Ferro-Electric BiFeO3 and Semiconductor Nanotubes 191
IV.H.4 University of Arkansas, Little Rock: An Integrated Approach of Hydrogen Storage in Complex Hydrides of Transitional Elements .. 639
XI.9 FedEx Freight: Fuel Cell-Powered Lift Truck FedEx Freight Fleet Deployment .. 1466

California

II.C.2 University of Southern California, Los Angeles: Development of Hydrogen Selective Membranes/Modules as Reactors/Separators for Distributed Hydrogen Production 62
II.F.2 Science Applications International Corporation: Solar High-Temperature Water-Splitting Cycle with Quantum Boost .. 120
II.G.3 University of California, Santa Barbara: Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials .. 145
II.G.4 Stanford University: Semiconductor Materials for Photoelectrolysis ... 150
II.G.12 Lawrence Livermore National Laboratory: Characterization and Optimization of Photoelectrode Surfaces for Solar-to-Chemical Fuel Conversion .. 187
II.H.1 University of California, Berkeley: Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures ... 195
II.I.1 Physical Optics Corporation: Photochemical System for Hydrogen Generation 212
II.I.3 Sierra Marine Technologies: Aqueous Phase Base-Facilitated Reforming (BFR) of Renewable Fuels ... 220
III.4 HyGen Industries: Development of a Centrifugal Hydrogen Pipeline Gas Compressor 267
III.7 Lawrence Livermore National Laboratory: Inexpensive Delivery of Cold Hydrogen in High Performance Glass Fiber Pressure Vessels .. 282
California (Continued)

III.7 Spencer Composites: Inexpensive Delivery of Cold Hydrogen in High Performance Glass Fiber Pressure Vessels ..282

III.12 Sandia National Laboratories: Hydrogen Embrittlement of Structural Steels306

III.20 Lawrence Livermore National Laboratory: Rapid Low-Loss Cryogenic Hydrogen Refueling341

IV.A.1a Sandia National Laboratories: Five-Year Review of Metal Hydride Center of Excellence361

IV.A.1d Sandia National Laboratories: Development of Metal Hydrides at Sandia National Laboratories ..377

IV.A.1j Jet Propulsion Laboratory: Development and Evaluation of Advanced Hydride Systems for Reversible Hydrogen Storage ..408

IV.A.3 University of California, Los Angeles: Efficient Discovery of Novel Multicomponent Mixtures for Hydrogen Storage: A Combined Computational/Experimental Approach428

IV.C.1e Karl Gross: NREL Research as Part of the Hydrogen Sorption Center of Excellence486

IV.C.1h Lawrence Livermore National Laboratory: Carbon Aerogels for Hydrogen Storage502

IV.D.1a Jet Propulsion Laboratory: Hydrogen Storage Engineering Center of Excellence514

IV.D.1a California Institute of Technology: Hydrogen Storage Engineering Center of Excellence514

IV.D.1i Jet Propulsion Laboratory: Key Technologies, Thermal Management, and Prototype Testing for Advanced Solid-State Hydrogen Storage Systems ..556

IV.D.1i California Institute of Technology: Key Technologies, Thermal Management, and Prototype Testing for Advanced Solid-State Hydrogen Storage Systems ..556

IV.F.1 University of California, Los Angeles: A Joint Theory and Experimental Project in the Synthesis and Testing of Porous COFs for On-Board Vehicular Hydrogen Storage ..591

IV.G.1 Lawrence Livermore National Laboratory: Extended Dormancy, Vacuum Stability, and Para-Ortho Hydrogen Conversion in Cryogenic Pressure Vessels615

IV.H.1 Trulite Inc.: NaSi and Na-SG Powder Hydrogen Fuel Cells628

V.B.1 Lawrence Berkeley National Laboratory: Water Transport Exploratory Studies706

V.D.1 Lawrence Livermore National Laboratory: New Polyelectrolyte Materials for High Temperature Fuel Cells ..741

V.E.1 Jet Propulsion Laboratory: Advanced Cathode Catalysts and Supports for PEM Fuel Cells790

V.E.4 California Institute of Technology: Non-Platinum Bimetallic Cathode Electro catalysts811

V.E.5 University of California, Riverside: Advanced Cathode Catalysts ..816

V.E.7 University of California, Riverside: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes ..830

V.E.7 Stanford University: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes830

V.E.8 Jet Propulsion Laboratory: Nanosegregated Cathode Alloy Catalysts with Ultra-Low Platinum Loading ..835

V.E.11 Lawrence Livermore National Laboratory: Molecular-Scale, Three-Dimensional Non-Platinum Group Metal Electrodes for Catalysis of Fuel Cell Reactions850

V.G.1 Intelligent Energy: Development and Demonstration of a New Generation High Efficiency 10-kW Stationary PEM Fuel Cell System ...861
California (Continued)

V.G.4 University of California, Davis: Research and Development for Off-Road Fuel Cell Applications

V.H.2 Lawrence Berkeley National Laboratory: Durability Improvements through Degradation Mechanism Studies

V.H.5 Lawrence Berkeley National Laboratory: Accelerated Testing Validation

V.I.2 Electricore, Inc.: Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

V.J.1 Jet Propulsion Laboratory: Novel Approach to Advanced Direct Methanol Fuel Cell (DMFC) Anode Catalysts

V.J.2 QuantumSphere Inc.: Novel Materials for High Efficiency Direct Methanol Fuel Cells

V.K.1 Honeywell Aerospace: Development of Thermal and Water Management System for PEM Fuel Cell

V.M.2 Lawrence Livermore National Laboratory: Fuel Cell Fundamentals at Low and Subzero Temperatures

V.M.3 Sandia National Laboratories: Development and Validation of a Two-Phase, Three-dimensional Model for PEM Fuel Cells

V.M.3 Lawrence Berkeley National Laboratory: Development and Validation of a Two-Phase, Three-dimensional Model for PEM Fuel Cells

V.N.2 Jet Propulsion Laboratory: Resonance-Stabilized Anion Exchange Polymer Electrolytes

V.N.2 University of Southern California, Los Angeles: Resonance-Stabilized Anion Exchange Polymer Electrolytes

V.P.24 Stanford University: Development and Mechanistic Characterization of Alloy Fuel Cell Catalysts

V.P.28 Lawrence Livermore National Laboratory: The Development of Nano-Composite Electrodes for Solid Oxide Electrolyzers

V.P.30 Lawrence Berkeley National Laboratory: Proton Conduction in Rare-Earth Phosphates

VI.3 UltraCell Corporation: Modular, High-Volume Fuel Cell Leak-Test Suite and Process

VI.10 Quantum Fuel Systems Technologies Worldwide, Inc.: Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

VII.2 Sandia National Laboratories: Analysis of Energy Infrastructures and Potential Impacts from an Emergent Hydrogen Fueling Infrastructure

VII.7 Lawrence Livermore National Laboratory: Hydrogen and Water: Engineering, Economics and Environment

VIII.2 Hyundai-KIA America Technical Center Inc.: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

VIII.2 Alameda-Contra Costa Transit: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

VIII.2 Southern California Edison: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

VIII.3 Mercedes-Benz Research & Development North America, Inc.: Hydrogen to the Highways

VIII.6 University of California, Irvine: California Hydrogen Infrastructure Project

IX.1 Steele Consulting: National Codes and Standards Template

IX.1 Smart Chemistry: National Codes and Standards Template

IX.3 Steele Consulting: Codes and Standards Training and Outreach and Education for Emerging Fuel Cell Technologies

IX.3 Smart Chemistry: Codes and Standards Training and Outreach and Education for Emerging Fuel Cell Technologies
California (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX.5</td>
<td>Sandia National Laboratories: Materials and Components Compatibility</td>
</tr>
<tr>
<td>IX.8</td>
<td>City of Santa Fe Springs: Hydrogen Safety Panel</td>
</tr>
<tr>
<td>IX.9</td>
<td>Sandia National Laboratories: Hydrogen Release Behavior</td>
</tr>
<tr>
<td>IX.10</td>
<td>Sandia National Laboratories: Risk-Informed Separation Distances for H₂ Facilities</td>
</tr>
<tr>
<td>IX.12</td>
<td>Intelligent Optical Systems, Inc.: Safe Detector System for Hydrogen Leaks</td>
</tr>
<tr>
<td>IX.13</td>
<td>California Fuel Cell Partnership: Hydrogen Safety Training for First Responders</td>
</tr>
<tr>
<td>IX.14</td>
<td>Lawrence Livermore National Laboratory: Hydrogen Safety Training for Researchers</td>
</tr>
<tr>
<td>X.1</td>
<td>California Fuel Cell Partnership: Hydrogen Safety Training for First Responders</td>
</tr>
<tr>
<td>X.2</td>
<td>Steele Consulting: Education for Emerging Fuel Cell Technologies</td>
</tr>
<tr>
<td>X.3</td>
<td>California State University, Los Angeles: Hydrogen and Fuel Cell Education at California State University, Los Angeles</td>
</tr>
<tr>
<td>X.4</td>
<td>Humboldt State University Sponsored Programs Foundation: Hydrogen Energy in Engineering Education (H₂E³)</td>
</tr>
<tr>
<td>X.4</td>
<td>University of California, Berkeley: Hydrogen Energy in Engineering Education (H₂E³)</td>
</tr>
<tr>
<td>X.14</td>
<td>Schatz Energy Research Center: H₂L³: Hydrogen Learning for Local Leaders</td>
</tr>
<tr>
<td>X.16</td>
<td>University of California, Berkeley: Hydrogen Technology and Energy Curriculum (HyTEC)</td>
</tr>
<tr>
<td>X.16</td>
<td>Humboldt State University: Hydrogen Technology and Energy Curriculum (HyTEC)</td>
</tr>
<tr>
<td>XI.2</td>
<td>Electricore, Inc.: Solid Oxide Fuel Cell Diesel Auxiliary Power Unit Demonstration</td>
</tr>
<tr>
<td>XI.3</td>
<td>University of California, Irvine: Highly Efficient, 5 kW CHP Fuel Cells Demonstrating Durability and Economic Value in Residential and Light Commercial Applications</td>
</tr>
<tr>
<td>XI.5</td>
<td>Jadoo Power, Inc.: Jadoo Power Fuel Cell Demonstration</td>
</tr>
<tr>
<td>XI.12</td>
<td>Allergy Systems, Folsom: Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network</td>
</tr>
</tbody>
</table>

Colorado

<table>
<thead>
<tr>
<th>Section</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.A.4</td>
<td>National Renewable Energy Laboratory: Distributed Bio-Oil Reforming</td>
</tr>
<tr>
<td>II.C.1</td>
<td>Colorado School of Mines: High-Performance Palladium-Based Membrane for Hydrogen Separation and Purification</td>
</tr>
<tr>
<td>II.D.3</td>
<td>Eltron Research Inc.: Scale Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants</td>
</tr>
<tr>
<td>II.E.3</td>
<td>Spectrum Automation: Renewable Electrolysis Integrated System Development and Testing</td>
</tr>
<tr>
<td>II.F.3</td>
<td>University of Colorado: Solar-Thermal Atomic Layer Deposition Ferrite-Based Water Splitting Cycles</td>
</tr>
<tr>
<td>II.G.4</td>
<td>National Renewable Energy Laboratory: Semiconductor Materials for Photovoltaics</td>
</tr>
</tbody>
</table>
Colorado (Continued)

II.G.7 MVSystems, Incorporated: Progress in the Study of Amorphous Silicon Carbide (a-SiC) as a Photoelectrode in Photoelectrochemical (PEC) Cells ... 167
II.G.8 MVSystems, Incorporated: Progress in the Study of Tungsten Oxide Compounds as Photoelectrodes in Photoelectrochemical Cells ... 171
II.G.9 MVSystems, Incorporated: Progress in the Study of Copper Chalcopyrites as Photoelectrodes in Photoelectrochemical Cells ... 175
II.G.10 National Renewable Energy Laboratory: Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen ... 179
II.G.13 National Renewable Energy Laboratory: Photoelectrochemical Generation of Hydrogen from Water Using Visible Light Sensitive Ferro-Electric BiFeO₃ and Semiconductor Nanotubes 191
II.H.2 National Renewable Energy Laboratory: Biological Systems for Hydrogen Photoproduction ... 198
II.H.3 National Renewable Energy Laboratory: Fermentation and Electrohydrogenic Approaches to Hydrogen Production ... 203
II.I.2 Synkera Technologies, Inc.: Nanotube Array Photoelectrochemical Hydrogen Production ... 216
II.I.8 National Renewable Energy Laboratory: Development of a Hydrogen Home Fueling System ... 240
II.J.2 National Renewable Energy Laboratory: Purdue Hydrogen Systems Laboratory: Hydrogen Production ... 245
III.2 National Renewable Energy Laboratory: H2A Delivery Analysis and H2A Delivery Components Model ... 259
IV.C.1a National Renewable Energy Laboratory: Overview of the DOE Hydrogen Sorption Center of Excellence ... 460
IV.C.1e National Renewable Energy Laboratory: NREL Research as Part of the Hydrogen Sorption Center of Excellence ... 486
IV.D.1a National Renewable Energy Laboratory: Hydrogen Storage Engineering Center of Excellence ... 514
IV.H.2 National Renewable Energy Laboratory: Purdue Hydrogen Systems Laboratory: Hydrogen Storage ... 632
V.C.4 National Renewable Energy Laboratory: Effect of System and Air Contaminants on PEMFC Performance and Durability ... 737
V.D.2 Colorado School of Mines: Membranes and MEAs for Dry, Hot Operating Conditions ... 748
V.D.4 BekkTech LLC: Lead Research and Development Activity for DOE’s High Temperature, Low Relative Humidity Membrane Program ... 758
V.D.7 Colorado School of Mines: Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes ... 772
V.E.7 National Renewable Energy Laboratory: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes ... 830
V.I.1 Protonex Technology Corporation: Diesel-Fueled SOFC System for Class 7/Class 8 On-Highway Truck Auxiliary Power ... 903
V.J.1 National Renewable Energy Laboratory: Novel Approach to Advanced Direct Methanol Fuel Cell (DMFC) Anode Catalysts ... 911
V.J.1 Colorado School of Mines: Novel Approach to Advanced Direct Methanol Fuel Cell (DMFC) Anode Catalysts ... 911
V.N.1 Versa Power Systems: Advanced Materials for RSOFC Dual Operation with Low Degradation ... 963
V.O.2 Colorado School of Mines: Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines ... 983
V.O.2 Protonex Technology Corporation: Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines ... 983
V.O.2 Reaction Systems, LLC: Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines ... 983
Colorado (Continued)

V.O.9 Colorado School of Mines: Biomass Fuel Cell Systems ... 1011
VI.1 National Renewable Energy Laboratory: Fuel Cell Membrane Electrode Assembly Manufacturing R&D ... 1127
VII.1 National Renewable Energy Laboratory: Scenario Evaluation, Regionalization and Analysis (SERA) Model ... 1177
VII.1 Allegiance Consulting: Scenario Evaluation, Regionalization and Analysis (SERA) Model ... 1177
VII.5 National Renewable Energy Laboratory: Biogas Resources Characterization ... 1191
VII.6 National Renewable Energy Laboratory: Cost and GHG Implications of Hydrogen for Energy Storage ... 1196
VII.8 National Renewable Energy Laboratory: Analysis of Business Cases with the Fuel Cell Power Model ... 1205
VII.10 National Renewable Energy Laboratory: Macro System Model ... 1213
VII.14 National Renewable Energy Laboratory: Fuel Cell Power Model: Evaluation of CHP and CHHP Applications ... 1232
VII.16 National Renewable Energy Laboratory: HyDRA: Hydrogen Demand and Resource Analysis Tool ... 1240
VII.16 A Mountaintop LLC: HyDRA: Hydrogen Demand and Resource Analysis Tool ... 1240
VIII.1 National Renewable Energy Laboratory: Controlled Hydrogen Fleet and Infrastructure Analysis ... 1253
VIII.7 National Renewable Energy Laboratory: Technology Validation: Fuel Cell Bus Evaluations ... 1280
IX.1 National Renewable Energy Laboratory: National Codes and Standards Template ... 1307
IX.1 FP2 Fire Protection Engineering: National Codes and Standards Template ... 1307
IX.1 MorEvents: National Codes and Standards Template ... 1307
IX.2 National Renewable Energy Laboratory: Component Standard Research and Development ... 1311
IX.3 National Renewable Energy Laboratory: Codes and Standards Training and Outreach and Education for Emerging Fuel Cell Technologies ... 1315
IX.3 FP2 Fire Protection Engineering: Codes and Standards Training and Outreach and Education for Emerging Fuel Cell Technologies ... 1315
IX.3 MorEvents: Codes and Standards Training and Outreach and Education for Emerging Fuel Cell Technologies ... 1315
IX.11 Element One, Inc.: International Energy Agency Hydrogen Implementing Agreement Task 19 Hydrogen Safety ... 1352
X.2 National Renewable Energy Laboratory: Education for Emerging Fuel Cell Technologies ... 1382
X.2 FP2 Fire Protection Engineering: Education for Emerging Fuel Cell Technologies ... 1382
X.2 MorEvents: Education for Emerging Fuel Cell Technologies ... 1382
X.15 National Conference of State Legislators: Hydrogen Education State Partnership Program ... 1426
XI.2 TDA Research, Inc.: Solid Oxide Fuel Cell Diesel Auxiliary Power Unit Demonstration ... 1446

Connecticut

II.B.1 United Technologies Research Center: A Novel Slurry-Based Biomass Reforming Process ... 46
II.D.5 United Technologies Research Center: Experimental Demonstration of Advanced Palladium Membrane Separators for Central High-Purity Hydrogen Production ... 90
II.E.1 Aviência, LLC: High-Capacity, High-Pressure Electrolysis System with Renewable Power Sources ... 99
Connecticut (Continued)

<table>
<thead>
<tr>
<th>Project Listing</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.I.7</td>
<td>Proton Energy Systems: Hydrogen by Wire - Home Fueling System</td>
</tr>
<tr>
<td>III.13</td>
<td>Gas Equipment Engineering Corporation: Innovative Hydrogen Liquefaction Cycle</td>
</tr>
<tr>
<td>III.13</td>
<td>R&D Dynamics: Innovative Hydrogen Liquefaction Cycle</td>
</tr>
<tr>
<td>III.14</td>
<td>United Technologies Research Center: Reversible Liquid Carriers for an Integrated Production, Storage and Delivery of Hydrogen</td>
</tr>
<tr>
<td>III.16</td>
<td>Sustainable Innovations, LLC: Development of Highly Efficient Solid-State Electrochemical Hydrogen Compressor</td>
</tr>
<tr>
<td>IV.D.1a</td>
<td>United Technologies Research Center: Hydrogen Storage Engineering Center of Excellence</td>
</tr>
<tr>
<td>IV.D.1c</td>
<td>United Technologies Research Center: Advancement of Systems Designs and Key Engineering Technologies for Materials-Based Hydrogen Storage</td>
</tr>
<tr>
<td>IV.E.4</td>
<td>United Technologies Research Center: Quantifying and Addressing the DOE Material Reactivity Requirements with Analysis and Testing of Hydrogen Storage Materials and Systems</td>
</tr>
<tr>
<td>V.C.3</td>
<td>University of Connecticut: The Effects of Impurities on Fuel Cell Performance and Durability</td>
</tr>
<tr>
<td>V.C.3</td>
<td>FuelCell Energy, Inc.: The Effects of Impurities on Fuel Cell Performance and Durability</td>
</tr>
<tr>
<td>V.C.3</td>
<td>United Technologies – Hamilton Sundstrand: The Effects of Impurities on Fuel Cell Performance and Durability</td>
</tr>
<tr>
<td>V.E.2</td>
<td>UTC Power: Highly Dispersed Alloy Catalyst for Durability</td>
</tr>
<tr>
<td>V.E.3</td>
<td>University of Connecticut: Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells</td>
</tr>
<tr>
<td>V.H.1</td>
<td>United Technologies Research Center: Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation</td>
</tr>
<tr>
<td>V.H.4</td>
<td>UTC Power: Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data</td>
</tr>
<tr>
<td>V.H.4</td>
<td>United Technologies Research Center: Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data</td>
</tr>
<tr>
<td>V.L.4</td>
<td>UTC Power: Low-Cost Durable Seals for PEMFCs</td>
</tr>
<tr>
<td>V.L.4</td>
<td>Henkel Corporation: Low-Cost Durable Seals for PEMFCs</td>
</tr>
<tr>
<td>V.M.2</td>
<td>United Technologies Research Center: Fuel Cell Fundamentals at Low and Subzero Temperatures</td>
</tr>
<tr>
<td>VI.4</td>
<td>UTC Power: Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning</td>
</tr>
<tr>
<td>VIII.2</td>
<td>UTC Power: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project</td>
</tr>
<tr>
<td>VIII.5</td>
<td>FuelCell Energy, Inc.: Validation of an Integrated Hydrogen Energy Station</td>
</tr>
<tr>
<td>IX.1</td>
<td>GWS Solutions of Tolland, LLC: National Codes and Standards Template</td>
</tr>
<tr>
<td>IX.3</td>
<td>GWS Solutions of Tolland, LLC: Codes and Standards Training and Outreach and Education for Emerging Fuel Cell Technologies</td>
</tr>
<tr>
<td>IX.8</td>
<td>Hydrogen Safety, LLC: Hydrogen Safety Panel</td>
</tr>
<tr>
<td>IX.8</td>
<td>GWS Solutions of Tolland, LLC: Hydrogen Safety Panel</td>
</tr>
<tr>
<td>X.2</td>
<td>GWS Solutions of Tolland, LLC: Education for Emerging Fuel Cell Technologies</td>
</tr>
<tr>
<td>X.12</td>
<td>Connecticut Center for Advanced Technology, Inc.: State and Local Partnership Building</td>
</tr>
</tbody>
</table>
XVI. Project Listings by State

Delaware

IV.A.4 Delaware State University: Hydrogen Storage Materials for Fuel Cell-Powered Vehicles .. 433

V.E.3 University of Delaware: Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells ... 805

V.F.1 University of Delaware: CIRRUS: Cell Ice Regulation & Removal Upon Start-Up ... 857

V.H.2 Ion Power: Durability Improvements through Degradation Mechanism Studies ... 881

V.H.5 Ion Power: Accelerated Testing Validation .. 895

VI.4 University of Delaware: Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning .. 1139

Florida

II.F.2 University of Central Florida: Solar High-Temperature Water-Splitting Cycle with Quantum Boost .. 120

V.D.4 University of Central Florida: Lead Research and Development Activity for DOE’s High Temperature, Low Relative Humidity Membrane Program .. 758

V.J.3 University of North Florida: New MEA Materials for Improved DMFC Performance, Durability, and Cost ... 917

V.J.3 University of Florida: New MEA Materials for Improved DMFC Performance, Durability, and Cost .. 917

VIIII.11 University of Central Florida: Florida Hydrogen Initiative .. 1294

VIIII.11 EnerFuels, Inc.: Florida Hydrogen Initiative .. 1294

VIIII.11 Florida Solar Energy Center: Florida Hydrogen Initiative .. 1294

VIIII.11 Orlando Science Center: Florida Hydrogen Initiative .. 1294

IX.8 Addison Bain: Hydrogen Safety Panel .. 1338

X.6 University of Central Florida: Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Program Concentration .. 1396

XI.4 University of North Florida: Advanced Direct Methanol Fuel Cell for Mobile Computing .. 1452

XI.4 University of Florida: Advanced Direct Methanol Fuel Cell for Mobile Computing .. 1452

Georgia

II.D.4 Georgia Institute of Technology: Amorphous Alloy Membranes for High Temperature Hydrogen Separation .. 86

III.15 Chemical Composite Coatings Int’l, LLC: Materials Solutions for Hydrogen Delivery in Pipelines .. 318

V.H.6 Georgia Institute of Technology: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches .. 899

V.P.2 Georgia Institute of Technology: Ab-initio Screening of Alloys for Hydrogen Purification Membranes .. 1021

Hawaii

II.G.1 University of Hawaii at Manoa: Photoelectrochemical Hydrogen Production: DOE PEC Working Group Overview .. 131

II.G.7 University of Hawaii at Manoa: Progress in the Study of Amorphous Silicon Carbide (a-SiC) as a Photoelectrode in Photoelectrochemical (PEC) Cells .. 167

II.G.8 University of Hawaii at Manoa: Progress in the Study of Tungsten Oxide Compounds as Photoelectrodes in Photoelectrochemical Cells .. 171
Hawaii (Continued)

II.G.9 University of Hawaii at Manoa: Progress in the Study of Copper Chalcopyrites as Photoelectrodes in Photoelectrochemical Cells .. 175

IV.A.1b University of Hawaii: Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides ... 564

V.C.4 University of Hawaii: Effect of System and Air Contaminants on PEMFC Performance and Durability ... 737

V.D.9 University of Hawaii: Improved, Low-Cost, Durable Fuel Cell Membranes 782

VIII.8 Hawaii Natural Energy Institute: Hawaii Hydrogen Power Park 1284

IX.1 University of Hawaii: National Codes and Standards Template 1507

IX.3 University of Hawaii: Codes and Standards Training and Outreach and Education for Emerging Fuel Cell Technologies ... 1315

X.2 University of Hawaii: Education for Emerging Fuel Cell Technologies 1382

Illinois

II.A.3 Argonne National Laboratory: Hydrogen from Glycerol: A Feasibility Study 34

II.A.5 Argonne National Laboratory: Distributed Reforming of Renewable Liquids Using Oxygen Transport Membranes ... 42

II.B.3 Gas Technology Institute: One Step Biomass Gas Reforming-Shift Separation Membrane Reactor ... 54

II.F.1 Argonne National Laboratory: R&D Status for the Cu-Cl Thermochemical Cycle-2010 115

III.1 Argonne National Laboratory: Hydrogen Delivery Infrastructure Analysis 255

III.18 Argonne National Laboratory: Hydrogen Pipeline Compressors 533

IV.A.1f University of Illinois at Urbana-Champaign: Reversible Hydrogen Storage Materials - Structure, Chemistry, and Electronic Structure 389

IV.A.3 Northwestern University: Efficient Discovery of Novel Multicomponent Mixtures for Hydrogen Storage: A Combined Computational/Experimental Approach 428

IV.C.1f Argonne National Laboratory: Hydrogen Storage through Nanostructured Porous Organic Polymers (POPs) ... 495

IV.C.1f University of Chicago: Hydrogen Storage through Nanostructured Porous Organic Polymers (POPs) ... 495

IV.C.3 Gas Technology Institute: Electron Charged Graphite-Based Hydrogen Storage Material 510

IV.C.3 Superior Graphite Company: Electron Charged Graphite-Based Hydrogen Storage Material 510

IV.E.1 Argonne National Laboratory: On-Board and Off-Board Analyses of Hydrogen Storage Options .. 566

IV.F.2 Northwestern University: New Carbon-Based Porous Materials with Increased Heats of Adsorption for Hydrogen Storage .. 600

V.A.1 Argonne National Laboratory: Fuel Cell Systems with Low Platinum Loadings 661

V.E.1 Argonne National Laboratory: Advanced Cathode Catalysts and Supports for PEM Fuel Cells 790

V.E.4 Argonne National Laboratory: Non-Platinum Bimetallic Cathode Electrocatalysts 811

V.E.4 University of Illinois at Urbana-Champaign: Non-Platinum Bimetallic Cathode Electrocatalysts 811

V.E.5 Argonne National Laboratory: Advanced Cathode Catalysts 816

V.E.5 University of Illinois at Urbana-Champaign: Advanced Cathode Catalysts 816

V.E.8 Argonne National Laboratory: Nanosegregated Cathode Alloy Catalysts with Ultra-Low Platinum Loading ... 835

V.H.1 Argonne National Laboratory: Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation .. 876
Illinois (Continued)

<table>
<thead>
<tr>
<th>Number</th>
<th>University/Institution</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.H.2</td>
<td>Argonne National Laboratory</td>
<td>Durability Improvements through Degradation Mechanism Studies</td>
</tr>
<tr>
<td>V.H.3</td>
<td>Argonne National Laboratory</td>
<td>Durability of Low Platinum Fuel Cells Operating at High Power Density</td>
</tr>
<tr>
<td>V.J.2</td>
<td>Illinois Institute of Technology</td>
<td>Novel Materials for High Efficiency Direct Methanol Fuel Cells</td>
</tr>
<tr>
<td>V.L.2</td>
<td>Gas Technology Institute</td>
<td>Low-Cost PEM Fuel Cell Metal Bipolar Plates</td>
</tr>
<tr>
<td>V.L.3</td>
<td>Argonne National Laboratory</td>
<td>Metallic Bipolar Plates with Composite Coatings</td>
</tr>
<tr>
<td>V.L.3</td>
<td>Southern Illinois University Carbondale</td>
<td>Metallic Bipolar Plates with Composite Coatings</td>
</tr>
<tr>
<td>V.L.3</td>
<td>Gas Technology Institute</td>
<td>Metallic Bipolar Plates with Composite Coatings</td>
</tr>
<tr>
<td>V.L.3</td>
<td>Orion Industries</td>
<td>Metallic Bipolar Plates with Composite Coatings</td>
</tr>
<tr>
<td>V.L.7</td>
<td>University of Illinois at Urbana-Champaign</td>
<td>Cathode Catalysis in Hydrogen/Oxygen Fuel Cells: Mechanism, New Materials, and Characterization</td>
</tr>
<tr>
<td>V.L.8</td>
<td>Argonne National Laboratory</td>
<td>Fundamental Studies of Electrocatalysis for Low Temperature Fuel Cell Catalysts</td>
</tr>
<tr>
<td>V.P.15</td>
<td>Argonne National Laboratory</td>
<td>Structure/Composition/Function Relationships in Supported Nanoscale Catalysts for Hydrogen</td>
</tr>
<tr>
<td>V.P.18</td>
<td>Northwestern University</td>
<td>High Performance Nano-Crystalline Oxide Fuel Cell Materials</td>
</tr>
<tr>
<td>V.P.23</td>
<td>Illinois Institute of Technology</td>
<td>Metal- and Metal Oxide-Supported Platinum Monolayer Electro catalysts for Oxygen Reduction</td>
</tr>
<tr>
<td>VII.3</td>
<td>Argonne National Laboratory</td>
<td>Agent-Based Model of the Transition to Hydrogen-Based Personal Transportation: Consumer Adoption and Infrastructure Development Including Combined Hydrogen, Heat, and Power</td>
</tr>
<tr>
<td>VII.9</td>
<td>Argonne National Laboratory</td>
<td>Fuel Quality in Fuel Cell Systems</td>
</tr>
<tr>
<td>VII.11</td>
<td>Argonne National Laboratory</td>
<td>Life-Cycle Analysis of Criteria Pollutant Emissions from Stationary Fuel Cell Systems with the GREET Model</td>
</tr>
<tr>
<td>VIII.10</td>
<td>Gas Technology Institute</td>
<td>Texas Hydrogen Highway</td>
</tr>
</tbody>
</table>

Indiana

<table>
<thead>
<tr>
<th>Number</th>
<th>University/Institution</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.J.2</td>
<td>Purdue University</td>
<td>Purdue Hydrogen Systems Laboratory: Hydrogen Production</td>
</tr>
<tr>
<td>IV.H.2</td>
<td>Purdue University</td>
<td>Purdue Hydrogen Systems Laboratory: Hydrogen Storage</td>
</tr>
<tr>
<td>V.E.8</td>
<td>Indiana University</td>
<td>Nanosegregated Cathode Alloy Catalysts with Ultra-Low Platinum Loading</td>
</tr>
</tbody>
</table>

Kansas

<table>
<thead>
<tr>
<th>Number</th>
<th>University/Institution</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI.12</td>
<td>Black & Veatch Corporation</td>
<td>Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network</td>
</tr>
<tr>
<td>XI.12</td>
<td>Ericsson Services, Inc.</td>
<td>Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network</td>
</tr>
</tbody>
</table>

Kentucky

<table>
<thead>
<tr>
<th>Number</th>
<th>University/Institution</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.15</td>
<td>Secat, Inc.</td>
<td>Materials Solutions for Hydrogen Delivery in Pipelines</td>
</tr>
<tr>
<td>III.15</td>
<td>Columbia Gas of Kentucky</td>
<td>Materials Solutions for Hydrogen Delivery in Pipelines</td>
</tr>
</tbody>
</table>

Louisiana

<table>
<thead>
<tr>
<th>Number</th>
<th>University/Institution</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.15</td>
<td>Hatch Mott MacDonald</td>
<td>Materials Solutions for Hydrogen Delivery in Pipelines</td>
</tr>
</tbody>
</table>
Maryland
II.H.2 Johns Hopkins University: Biological Systems for Hydrogen Photoproduction ... 198
II.H.4 J. Craig Venter Institute: Hydrogen from Water in a Novel Recombinant Oxygen-Tolerant Cyanobacterial System ... 208
II.I.3 Sentech, Inc.: Aqueous Phase Base-Facilitated Reforming (BFR) of Renewable Fuels .. 220
IV.A.1h National Institute of Standards and Technology: Neutron Characterization and Calphad in Support of the Metal Hydride Center of Excellence .. 399
IV.C.1d National Institute of Standards and Technology: Neutron Characterization in Support of the Hydrogen Sorption Center of Excellence .. 481
VA.5 National Institute of Standards and Technology: Neutron Imaging Study of the Water Transport in Operating Fuel Cells .. 686
V.B.1 National Institute of Standards and Technology: Water Transport Exploratory Studies ... 706
V.F.1 W.L. Gore & Associates, Inc.: CIRRUS: Cell Ice Regulation & Removal Upon Start-Up .. 857
V.K.2 W.L. Gore & Associates, Inc.: Materials and Modules for Low-Cost, High-Performance Fuel Cell Humidifiers .. 922
V.P.9 Johns Hopkins University: Engineering Catalytic Nanoporous Metals for Reactions Important to the Hydrogen Economy .. 1044
V.P.21 University of Maryland: Atomic-scale Design of a New Class of Alloy Catalysts for Reactions Involving Hydrogen: A Theoretical and Experimental Approach ... 1084
VI.4 W.L. Gore & Associates, Inc.: Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning ... 1139
VI.6 National Institute of Standards and Technology: Cause-and-Effect: Flow Field Plate Manufacturing Variability and its Impact on Performance ...1149
VI.7 National Institute of Standards and Technology: Non-Contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control .. 1153
VI.8 National Institute of Standards and Technology: Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods .. 1157
IX.8 Energetics, Inc.: Hydrogen Safety Panel ... 1358
X.11 University of Maryland: VA-MD-DC Hydrogen Education for Decision Makers ... 1414
X.17 Sentech, Inc.: H₂ Educate – Middle School Hydrogen Education Program ... 1432

Massachusetts
II.D.1 Worcester Polytechnic Institute: Composite Pd and Alloy Porous Stainless Steel Membranes for Hydrogen Production and Process Intensification ... 74
II.D.6 Worcester Polytechnic Institute: Supported Molten Metal Membrane (SMMM) for Hydrogen Separation .. 95
II.E.2 Giner Electrochemical Systems, LLC: PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane ... 103
II.H.2 Massachusetts Institute of Technology: Biological Systems for Hydrogen Photoproduction .. 198
II.I.4 ElectroChem, Inc.: Advanced PEM-Based Hydrogen Home Refueling Appliance ... 224
II.I.5 Giner Electrochemical Systems, LLC: Unitized Design for Home Refueling Appliance or Hydrogen Generation to 5,000 psi .. 227
III.4 Concepts NREC: Development of a Centrifugal Hydrogen Pipeline Gas Compressor .. 267
III.13 Massachusetts Institute of Technology: Innovative Hydrogen Liquefaction Cycle ... 310
IVA.2 Massachusetts Institute of Technology: Tunable Thermodynamics and Kinetics for Hydrogen Storage: Nanoparticle Synthesis Using Ordered Polymer Templates .. 423
IV.C.2 PoroGen, LLC: Nanostructured Activated Carbon for Hydrogen Storage .. 506
IVE.2 TIAX, LLC: Analyses of Hydrogen Storage Materials and On-Board Systems ... 572
IVE.4 Kidde-Fenwal: Quantifying and Addressing the DOE Material Reactivity Requirements with Analysis and Testing of Hydrogen Storage Materials and Systems .. 581
Massachusetts (Continued)

V.A.3 TIAX, LLC: Cost Analyses of Fuel Cell Stacks/Systems .. 672
V.D.3 Giner Electrochemical Systems, LLC: Dimensionally Stable Membranes (DSMs) 754
V.E.9 Massachusetts Institute of Technology: Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability Low-Cost Supports .. 841
V.F.1 Nuvera Fuel Cells: CIRRUS: Cell Ice Regulation & Removal Upon Start-Up 857
V.G.2 Acumentrics Corporation: Development of a Low Cost 3-10 kW Tubular SOFC Power System ... 866
V.H.1 Massachusetts Institute of Technology: Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation .. 876
V.H.3 Nuvera Fuel Cells, Inc.: Durability of Low Platinum Fuel Cells Operating at High Power Density .. 886
V.J.3 Northeastern University: New MEA Materials for Improved DMFC Performance, Durability, and Cost ... 917
V.L.2 IBIS Associations, Inc.: Low-Cost PEM Fuel Cell Metal Bipolar Plates 930
V.M.5 Giner Electrochemical Systems, LLC: Transport Studies and Modeling in PEM Fuel Cells 960
V.M.5 Tech-Etch: Transport Studies and Modeling in PEM Fuel Cells 960
V.M.5 Ballard Material Products, Inc.: Transport Studies and Modeling in PEM Fuel Cells 960
V.P.6 Massachusetts Institute of Technology: Activity and Stability of Nanoscale Pt-based Catalysts 1033
V.P.19 Tufts University: Nanostructured, Metal-Modified Oxide Catalysts for Steam Reforming of Methanol and the Water-Gas Shift Reactions .. 1078
VI.2 Ballard Material Products, Inc.: Reduction in Fabrication Costs of Gas Diffusion Layers 1131
VII.8 IDC Energy Insights: Analysis of Business Cases with the Fuel Cell Power Model 1205
VII.15 TIAX, LLC: Geo-Spatial Analysis of Hydrogen Infrastructure 1236
IX.8 Firexplo: Hydrogen Safety Panel ... 1338
XI.8 Nuvera Fuel Cells, Inc.: H-E-B Grocery Total Power Solution for Fuel Cell-Powered Material Handling Equipment ... 1462

Michigan

II.I.3 Energy Conversion Devices, Inc.: Aqueous Phase Base-Facilitated Reforming (BFR) of Renewable Fuels ... 220
II.I.3 Western Michigan University: Aqueous Phase Base-Facilitated Reforming (BFR) of Renewable Fuels ... 220
IV.C.1g University of Michigan: Hydrogen Storage by Spillover .. 499
IV.D.1a General Motors Company: Hydrogen Storage Engineering Center of Excellence 514
IV.D.1a Ford Motor Company: Hydrogen Storage Engineering Center of Excellence 514
IV.D.1a University of Michigan: Hydrogen Storage Engineering Center of Excellence 514
IV.D.1f General Motors Company: System Design and Media Structuring for On-Board Hydrogen Storage Technologies ... 541
IV.D.1g Ford Motor Company: Ford/BASF-SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence .. 546
IV.D.1g University of Michigan: Ford/BASF-SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence .. 546
IV.I.1 Ovonic Hydrogen Systems LLC: Standardized Testing Program for Solid-State Hydrogen Storage Technologies ... 647
V.B.3 General Motors Company: Visualization of Fuel Cell Water Transport and Performance Characterization Under Freezing Conditions 716
Michigan (Continued)

V.B.3 Michigan Technological University: Visualization of Fuel Cell Water Transport and Performance Characterization Under Freezing Conditions .. 716
V.D.2 University of Detroit Mercy: Membranes and MEAs for Dry, Hot Operating Conditions 748
V.H.6 Michigan Technological University: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches .. 899
V.L.1 General Motors Company: Nitrided Metallic Bipolar Plates .. 925
V.L.4 Freudenberg-NOK General Partnership: Low-Cost Durable Seals for PEMFCs 959
V.M.3 Ford Motor Company: Development and Validation of a Two-Phase, Three-dimensional Model for PEM Fuel Cells .. 952
V.O.1 Michigan Technological University: Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials .. 978
VIII.3 DTE Energy: Hydrogen to the Highways .. 1264
VIII.5 NextEnergy: Hydrogen to the Highways .. 1264
IX.1 Sloane Solutions: National Codes and Standards Template ... 1307
IX.3 Sloane Solutions: Codes and Standards Training and Outreach and Education for Emerging Fuel Cell Technologies .. 1315
IX.8 General Motors Company: Hydrogen Safety Panel ... 1358
X.2 Sloane Solutions: Education for Emerging Fuel Cell Technologies 1382
X.5 Michigan Technological University: Hydrogen Education Curriculum Path at Michigan Technological University .. 1393
XI.2 Delphi Automotive Systems, LLC: Solid Oxide Fuel Cell Diesel Auxiliary Power Unit Demonstration .. 1446
XI.5 Delphi Corporation: Jadoo Power Fuel Cell Demonstration .. 1454

Minnesota

II.A.4 University of Minnesota: Distributed Bio-Oil Reforming ... 58
II.E.4 Entegris, Inc.: High-Performance, Low-Cost Hydrogen Generation from Renewable Energy 112
V.D.2 3M Company: Membranes and MEAs for Dry, Hot Operating Conditions 748
V.D.7 3M Company: Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes .. 772
V.E.1 3M Company: Advanced Cathode Catalysts and Supports for PEM Fuel Cells 790
V.E.8 3M Company: Nanosegregated Cathode Alloy Catalysts with Ultra-Low Platinum Loading 835
V.G.4 The Toro Company: Research and Development for Off-Road Fuel Cell Applications 873
VI.1 Cummins Power Generation: Diesel-Fueled SOFC System for Class 7/Class 8 On-Highway Truck Auxiliary Power .. 903
V.M.2 3M Company: Fuel Cell Fundamentals at Low and Subzero Temperatures 948

Mississippi

V.O.4 University of Southern Mississippi: Alternate Fuel Cell Membranes for Energy Independence .. 993

Missouri

IV.A.1d University of Missouri, St. Louis: Development of Metal Hydrides at Sandia National Laboratories .. 377
IV.A.2 University of Missouri, St. Louis: Tunable Thermodynamics and Kinetics for Hydrogen Storage: Nanoparticle Synthesis Using Ordered Polymer Templates .. 423
Missouri (Continued)

IV.C.1c University of Missouri: Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage .. 474

IV.C.1c Midwest Research Institute: Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage .. 474

IX.8 Becht Engineering: Hydrogen Safety Panel .. 1338

Nebraska

III.8 Lincoln Composites, Inc.: Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery .. 290

IV.D.1a Lincoln Composites, Inc.: Hydrogen Storage Engineering Center of Excellence .. 514

IV.D.1k Lincoln Composites, Inc.: Development of Improved Composite Pressure Vessels for Hydrogen Storage .. 563

Nevada

II.G.4 University of Nevada, Las Vegas: Semiconductor Materials for Photoelectrolysis .. 150

II.G.5 University of Nevada, Las Vegas: Characterization of Materials for Photoelectrochemical Hydrogen Production .. 157

II.G.13 University of Nevada, Reno: Photoelectrochemical Generation of Hydrogen from Water Using Visible Light Sensitive Ferro-Electric BiFeO$_3$ and Semiconductor Nanotubes .. 191

IV.A.11 University of Nevada, Reno: Effect of Gaseous Impurities on Long-Term Thermal Cycling and Aging Properties of Complex Hydrides for Hydrogen Storage .. 417

IV.H.3 University of Nevada, Las Vegas: HGMS: Glasses and Nanocomposites for Hydrogen Storage .. 637

VE.4 University of Nevada: Non-Platinum Bimetallic Cathode Electrocatalysts .. 811

New Jersey

III.14 BMW Technology Corporation: Reversible Liquid Carriers for an Integrated Production, Storage and Delivery of Hydrogen .. 314

IV.F.3 Rutgers University: Hydrogen Trapping through Designer Hydrogen Spillover Molecules with Reversible Temperature and Pressure-Induced Switching .. 605

V.L.2 TreadStone Technologies, Inc.: Low-Cost PEM Fuel Cell Metal Bipolar Plates .. 930

VI.9 BASF Fuel Cell, Inc.: High-Speed, Low-Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies .. 1162

VIII.3 Mercedes-Benz USA LLC: Hydrogen to the Highways .. 1264

XI.11 Linde North America: Fuel Cell-Powered Lift Truck GENCO Fleet Deployment .. 1470

New Mexico

II.B.2 Los Alamos National Laboratory: Catalytic Solubilization and Conversion of Lignocellulosic Feedstocks .. 50

IV.B.1a Los Alamos National Laboratory: 2010 Overview and Wrapup: DOE Chemical Hydrogen Storage Center of Excellence (CHSCoE) .. 437

IV.B.1c Los Alamos National Laboratory: Chemical Hydrogen Storage R&D at Los Alamos National Laboratory .. 447

IV.D.1a Los Alamos National Laboratory: Hydrogen Storage Engineering Center of Excellence .. 514

IV.D.1d Los Alamos National Laboratory: Chemical Hydride Rate Modeling, Validation, and System Demonstration .. 529
New Mexico (Continued)

IV.F.4 Los Alamos National Laboratory: Capacitive Hydrogen Storage Systems: Molecular Design of Structured Dielectrics .. 610
V.A.8 Los Alamos National Laboratory: Technical Assistance to Developers ... 703
V.B.1 Los Alamos National Laboratory: Water Transport Exploratory Studies ... 706
V.B.1 Sandia National Laboratories: Water Transport Exploratory Studies ... 706
V.C.1 Los Alamos National Laboratory: Effects of Fuel and Air Impurities on PEM Fuel Cell Performance ... 722
V.C.4 Los Alamos National Laboratory: Effect of System and Air Contaminants on PEMFC Performance and Durability .. 737
V.E.4 Los Alamos National Laboratory: Non-Platinum Bimetallic Cathode Electrocatalysts 811
V.E.5 Los Alamos National Laboratory: Advanced Cathode Catalysts ... 816
V.E.5 Cabot Fuel Cells: Advanced Cathode Catalysts .. 816
V.E.5 University of New Mexico: Advanced Cathode Catalysts ... 816
V.E.7 Los Alamos National Laboratory: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes ... 830
V.E.10 Los Alamos National Laboratory: The Science and Engineering of Durable Ultralow PGM Catalysts ... 845
V.H.2 Los Alamos National Laboratory: Durability Improvements through Degradation Mechanism Studies .. 881
V.H.3 Los Alamos National Laboratory: Durability of Low Platinum Fuel Cells Operating at High Power Density .. 886
V.H.4 Los Alamos National Laboratory: Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data .. 890
V.H.5 Los Alamos National Laboratory: Accelerated Testing Validation .. 895
V.H.6 Los Alamos National Laboratory: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches .. 899
V.H.6 University of New Mexico: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches .. 899
V.M.2 Los Alamos National Laboratory: Fuel Cell Fundamentals at Low and Subzero Temperatures 948
V.M.3 Los Alamos National Laboratory: Development and Validation of a Two-Phase, Three-dimensional Model for PEM Fuel Cells ... 952
V.N.2 Los Alamos National Laboratory: Resonance-Stabilized Anion Exchange Polymer Electrolytes ... 967
V.N.2 Sandia National Laboratories: Resonance-Stabilized Anion Exchange Polymer Electrolytes 967
V.N.3 Los Alamos National Laboratory: Engineered Nano-Scale Ceramic Supports for PEM Fuel Cells ... 971
V.N.3 University of New Mexico: Engineered Nano-Scale Ceramic Supports for PEM Fuel Cells 971
IX.4 Los Alamos National Laboratory: Hydrogen Safety Sensors ... 1319
IX.7 Los Alamos National Laboratory: Hydrogen Fuel Quality ... 1335
X.11 Los Alamos National Laboratory: VA-MD-DC Hydrogen Education for Decision Makers 1414
X.17 Los Alamos National Laboratory: H2 Educate – Middle School Hydrogen Education Program ... 1432

New York

II.C.1 Pall Corporation: High-Performance Palladium-Based Membrane for Hydrogen Separation and Purification ... 57
New York (Continued)

II.D.5 Pall Corporation: Experimental Demonstration of Advanced Palladium Membrane Separators for Central High-Purity Hydrogen Production ... 90

II.F.2 Electrosynthesis Co., Inc.: Solar High-Temperature Water-Splitting Cycle with Quantum Boost 120

III.3 Mohawk Innovative Technologies, Inc.: Oil-Free Centrifugal Hydrogen Compression Technology Demonstration ... 263

III.4 Praxair, Inc.: Development of a Centrifugal Hydrogen Pipeline Gas Compressor ... 267

III.5 Praxair, Inc.: Advanced Hydrogen Liquefaction Process ... 274

III.15 ASME Standards and Technologies LLC: Materials Solutions for Hydrogen Delivery in Pipelines ... 318

III.19 Mohawk Innovative Technologies, Inc.: Advanced Sealing Technology for Hydrogen Compression ... 337

IV.A.1e Brookhaven National Laboratory: Aluminum Hydride Regeneration .. 385

IV.C.1e Shanghai Zhang: NREL Research as Part of the Hydrogen Sorption Center of Excellence .. 486

IV.C.2 State University of New York, Syracuse: Nanostructured Activated Carbon for Hydrogen Storage ... 506

IV.H.1 SiGNa: NaSi and Na-SG Powder Hydrogen Fuel Cells ... 628

V.B.3 Rochester Institute of Technology: Visualization of Fuel Cell Water Transport and Performance Characterization Under Freezing Conditions ... 716

V.C.4 General Motors Company: Effect of System and Air Contaminants on PEMFC Performance and Durability ... 737

V.D.3 State University of New York, Syracuse: Dimensionally Stable Membranes (DSMs) ... 754

V.E.2 Brookhaven National Laboratory: Highly Dispersed Alloy Catalyst for Durability ... 799

V.E.5 Brookhaven National Laboratory: Advanced Cathode Catalysts ... 816

V.E.7 State University of New York, Albany: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes .. 830

V.E.9 Brookhaven National Laboratory: Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability Low-Cost Supports .. 841

V.G.3 Plug Power Inc.: Intergovernmental Stationary Fuel Cell System Demonstration ... 870

V.I.2 Delphi Corporation: Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications .. 907

V.L.2 State University of New York, Stony Brook: Low-Cost PEM Fuel Cell Metal Bipolar Plates .. 930

V.M.1 Plug Power Inc.: Air-Cooled Stack Freeze Tolerance ... 943

V.P.13 Brookhaven National Laboratory: In-Situ Studies of Active Sites and Mechanism for the Water-Gas Shift Reaction on Metal/Oxide Nanocatalysts .. 1058

V.P.17 Cornell University: Transport Phenomena and Interfacial Kinetics in Planar Microfluidic Membraneless Fuel Cells ... 1072

V.P.19 Columbia University: Nanostructured, Metal-Modified Oxide Catalysts for Steam Reforming of Methanol and the Water-Gas Shift Reactions ... 1078

V.P.23 Brookhaven National Laboratory: Metal- and Metal Oxide-Supported Platinum Monolayer Electrocatalysts for Oxygen Reduction .. 1092

VI.5 Rensselaer Polytechnic Institute: Adaptive Process Controls and Ultrasونics for High Temperature PEM MEA Manufacture ... 1144

VIII.4 General Motors Company: Hydrogen Vehicle and Infrastructure Demonstration and Validation ... 1269

IX.2 American Society of Mechanical Engineers: Component Standard Research and Development ... 1311

XI.1 MTI Micro Fuel Cells, Inc.: Commercialization Effort for 1 W Consumer Electronics Power Pack ... 1443

XI.3 Plug Power Inc.: Highly Efficient, 5 kW CHP Fuel Cells Demonstrating Durability and Economic Value in Residential and Light Commercial Applications .. 1449
New York (Continued)

XI.9 Plug Power Inc.: Fuel Cell-Powered Lift Truck FedEx Freight Fleet Deployment 1466
XI.10 Plug Power Inc.: Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment 1468
XI.11 Plug Power Inc.: Fuel Cell-Powered Lift Truck GENCO Fleet Deployment ... 1470

North Carolina

II.H.2 North Carolina State University: Biological Systems for Hydrogen Photoproduction 198
V.B.2 Techverse: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization ... 711
V.C.2 John Deere: Fundamental Effects of Impurities on Fuel Cell Performance and Durability 727
V.D.4 Scribner Associates, Inc.: Lead Research and Development Activity for DOE’s High Temperature, Low Relative Humidity Membrane Program .. 758
V.I.2 Volvo Trucks North America: Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications ... 907
V.O.7 Microcell Corporation: Martin County Hydrogen Fuel Cell Development 1005
IX.1 Russell Hewett: National Codes and Standards Template ... 1307
IX.3 Russell Hewett: Codes and Standards Training and Outreach and Education for Emerging Fuel Cell Technologies ... 1315
X.2 Russell Hewett: Education for Emerging Fuel Cell Technologies ... 1382
X.6 University of North Carolina at Charlotte: Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Program Concentration ... 1396
X.8 Carolina Tractor & Equipment Co. Inc.: Dedicated to The Continued Education, Training and Demonstration of PEM Fuel Cell Powered Lift Trucks In Real-World Applications 1404

North Dakota

II.B.1 University of North Dakota: A Novel Slurry-Based Biomass Reforming Process 46
X.7 University of North Dakota: Development of a Renewable Hydrogen Production and Fuel Cell Education Program ... 1400

Ohio

II.A.1 Ohio State University: Investigation of Reaction Networks and Active Sites in Bio-Ethanol Steam Reforming over Co-based Catalysts ... 23
II.C.3 University of Cincinnati: Zeolite Membrane Reactor for Water-Gas Shift Reaction for Hydrogen Production ... 67
II.C.3 Ohio State University: Zeolite Membrane Reactor for Water-Gas Shift Reaction for Hydrogen Production ... 67
II.D.1 Adsorption Research, Inc.: Composite Pd and Alloy Porous Stainless Steel Membranes for Hydrogen Production and Process Intensification .. 74
II.G.10 Xunlight Corporation: Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen ... 179
II.G.10 University of Toledo: Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen ... 179
II.J.1 Edison Materials Technology Center: Developing Improved Materials to Support the Hydrogen Economy ... 243
IV.A.1c Ohio State University: Lightweight Metal Hydrides for Hydrogen Storage 371
V.A.6 Battelle: Economic Analysis of Stationary PEM Fuel Cell Systems ... 693
V.D.2 Case Western Reserve University: Membranes and MEAs for Dry, Hot Operating Conditions 748
V.D.5 Case Western Reserve University: Poly(p-Phenylene Sulfonic Acids): PEMs with Frozen-In Free Volume ... 761
Ohio (Continued)

V.D.6 Wright State University: NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells ... 767
V.D.10 University of Akron: Protonic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes .. 786
V.O.3 University of Akron: Development of Kilowatt-Scale Coal-Based Fuel Cell Technology 988
V.O.5 Rolls Royce Fuel Cell Systems Inc.: Extended Durability Testing of an External Fuel Processor for SOFC ... 997
V.O.8 Stark State College of Technology: Fuel Cell Balance-of-Plant Reliability Testbed 1007
V.O.8 Lockheed Martin-IDT: Fuel Cell Balance-of-Plant Reliability Testbed 1007
V.P.3 Case Western Reserve University: Theory, Modeling, and Simulation of Ion Transport in Ionomer Membranes ... 1023
V.P.12 Ohio State University: Investigation of the Oxygen Reduction Reaction Activity of Heteroatom-containing Carbon Nano-structures 1055
VI.3 Cincinnati Test Systems: Modular, High-Volume Fuel Cell Leak-Test Suite and Process 1135
VI.9 Case Western Reserve University: High-Speed, Low-Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies ... 1162
VIII.7 Battelle: Technology Validation: Fuel Cell Bus Evaluations .. 1280
IX.1 CSA Standards: National Codes and Standards Template ... 1307
IX.3 CSA Standards: Codes and Standards Training and Outreach and Education for Emerging Fuel Cell Technologies ... 1315
IX.8 Powdermet Inc.: Hydrogen Safety Panel .. 1358
X.2 CSA Standards: Education for Emerging Fuel Cell Technologies 1382
X.13 Ohio Fuel Cell Coalition: Raising H2 and Fuel Cell Awareness in Ohio 1420
X.13 Edison Materials Technology Center: Raising H2 and Fuel Cell Awareness in Ohio 1420

Oregon

V.G.4 IdaTech, LLC: Research and Development for Off-Road Fuel Cell Applications 873
II.B.3 ATI Wah Chang: One Step Biomass Gas Reforming-Shift Separation Membrane Reactor 54
III.15 Evraz North America: Materials Solutions for Hydrogen Delivery in Pipelines 318
IV.B.1b University of Oregon: Hydrogen Storage by Novel CBN Heterocycle Materials 443
IV.D.1a Oregon State University: Hydrogen Storage Engineering Center of Excellence 514

Pennsylvania

II.B.3 National Energy Technology Laboratory: One Step Biomass Gas Reforming-Shift Separation Membrane Reactor ... 54
II.B.3 Schott North America: One Step Biomass Gas Reforming-Shift Separation Membrane Reactor 54
II.C.2 Media and Process Technology Inc.: Development of Hydrogen Selective Membranes/Modules as Reactors/Separators for Distributed Hydrogen Production ... 62
II.D.2 National Energy Technology Laboratory: Development of Robust Hydrogen Separation Membranes ... 79
II.D.5 Power+Energy, Inc.: Experimental Demonstration of Advanced Palladium Membrane Separators for Central High-Purity Hydrogen Production 90
II.E.4 Pennsylvania State University: High-Performance, Low-Cost Hydrogen Generation from Renewable Energy ... 112
II.H.3 Pennsylvania State University: Fermentation and Electrohydrogenic Approaches to Hydrogen Production ... 203
Pennsylvania (Continued)

III.14 Air Products and Chemicals, Inc.: Reversible Liquid Carriers for an Integrated Production, Storage and Delivery of Hydrogen ... 314

III.15 Schott North America: Materials Solutions for Hydrogen Delivery in Pipelines318

III.15 Reference Metals Company: Materials Solutions for Hydrogen Delivery in Pipelines318

IV.F.3 Pennsylvania State University: Hydrogen Trapping through Designer Hydrogen Spillover Molecules with Reversible Temperature and Pressure-Induced Switching605

V.D.9 Arkema Inc.: Improved, Low-Cost, Durable Fuel Cell Membranes782

V.J.2 Arkema Inc.: Novel Materials for High Efficiency Direct Methanol Fuel Cells915

V.M.2 Pennsylvania State University: Fuel Cell Fundamentals at Low and Subzero Temperatures 948

V.M.3 Pennsylvania State University: Development and Validation of a Two-Phase, Three-dimensional Model for PEM Fuel Cells ...952

V.O.10 Dynalene Inc.: Fuel Cell Coolant Optimization and Scale Up1015

V.O.10 Lehigh University: Fuel Cell Coolant Optimization and Scale Up1015

V.P.22 University of Pittsburgh: Multiscale Tailoring of Highly Active and Stable Nanocomposite Catalysts for the Production of Clean Hydrogen Streams1088

V.P.27 Lehigh University: Porous and Glued Ultrathin Membranes1106

V.P.28 University of Pennsylvania: The Development of Nano-Composite Electrodes for Solid Oxide Electrolyzers ...1109

VI.2 Pennsylvania State University: Reduction in Fabrication Costs of Gas Diffusion Layers1131

VIII.5 Air Products and Chemicals, Inc.: Validation of an Integrated Hydrogen Energy Station 1275

VIII.6 Air Products and Chemicals, Inc.: California Hydrogen Infrastructure Project1277

IX.1 SAE International: National Codes and Standards Template .. 1307

IX.1 Bethlehem Hydrogen: National Codes and Standards Template1307

IX.2 SAE International: Component Standard Research and Development1311

IX.3 SAE International: Codes and Standards Training and Outreach and Education for Emerging Fuel Cell Technologies ...1315

IX.3 Bethlehem Hydrogen: Codes and Standards Training and Outreach and Education for Emerging Fuel Cell Technologies ...1315

IX.8 Air Products and Chemicals, Inc.: Hydrogen Safety Panel ...1338

X.2 SAE International: Education for Emerging Fuel Cell Technologies1382

X.2 Bethlehem Hydrogen: Education for Emerging Fuel Cell Technologies1382

XI.9 Air Products and Chemicals, Inc.: Fuel Cell-Powered Lift Truck FedEx Freight Fleet Deployment ...1466

XI.10 Air Products and Chemicals, Inc.: Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment ...1468

XI.11 GENCO: Fuel Cell-Powered Lift Truck GENCO Fleet Deployment1470

XI.11 Air Products and Chemicals, Inc.: Fuel Cell-Powered Lift Truck GENCO Fleet Deployment ...1470

XI.12 Air Products and Chemicals, Inc.: Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network ...1472

Rhode Island

V.E.8 Brown University: Nanosegregated Cathode Alloy Catalysts with Ultra-Low Platinum Loading 835
XVI. Project Listings by State

South Carolina

III.9 Savannah River National Laboratory: Fiber Reinforced Composite Pipelines ... 295
IV.A.1g Savannah River National Laboratory: Electrochemical Reversible Formation of Alane 394
IV.A.1k Savannah River National Laboratory: Li-Mg-N Hydrogen Storage Materials 413
IV.D.1a Savannah River National Laboratory: Hydrogen Storage Engineering Center of Excellence 514
IV.D.1h Savannah River National Laboratory: SRNL Technical Work Scope for the Hydrogen Storage Engineering Center of Excellence .. 551
IV.E.3 Savannah River National Laboratory: Fundamental Reactivity Testing and Analysis of Hydrogen Storage Materials .. 576
V.C.2 Clemson University: Fundamental Effects of Impurities on Fuel Cell Performance and Durability 727
V.C.2 Savannah River National Laboratory: Fundamental Effects of Impurities on Fuel Cell Performance and Durability .. 727
V.C.4 University of South Carolina: Effect of System and Air Contaminants on PEMFC Performance and Durability .. 737
V.M.5 University of South Carolina: Transport Studies and Modeling in PEM Fuel Cells .. 960
V.O.1 Clemson University: Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials ... 978
V.O.6 University of South Carolina: Hydrogen Fuel Cell Development in Columbia (SC) .. 1001
V.P.1 Clemson University: Fluoropolymers, Electrolytes, Composites and Electrodes .. 1018
IX.1 University of South Carolina Research Foundation: National Codes and Standards Template 1307
IX.3 University of South Carolina Research Foundation: Codes and Standards Training and Outreach and Education for Emerging Fuel Cell Technologies 1315
X.2 University of South Carolina Research Foundation: Education for Emerging Fuel Cell Technologies 1382
X.10 South Carolina Hydrogen and Fuel Cell Alliance: Development of Hydrogen Education Programs for Government Officials .. 1411
X.10 Greenway Energy: Development of Hydrogen Education Programs for Government Officials 1411

Tennessee

II.C.1 Oak Ridge National Laboratory: High-Performance Palladium-Based Membrane for Hydrogen Separation and Purification ... 57
II.D.3 Eastman Chemical Company: Scale Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants .. 82
III.11 Oak Ridge National Laboratory: Composite Technology for Hydrogen Pipelines .. 302
III.15 Advanced Technology Corporation: Materials Solutions for Hydrogen Delivery in Pipelines 318
III.17 Oak Ridge National Laboratory: Hydrogen Permeability and Integrity of Steel Welds 526
III.21 Oak Ridge National Laboratory: Range Optimization for Fuel Cell Vehicles ... 344
IV.A.1i Oak Ridge National Laboratory: Metal Borohydrides, Ammines, and Aluminum Hydrides as Hydrogen Storage Materials ... 404
IV.G.2 Oak Ridge National Laboratory: Lifecycle Verification of Polymeric Storage Liners 619
IV.G.3 Oak Ridge National Laboratory: High Strength Carbon Fibers .. 622
V.A.4 Oak Ridge National Laboratory: Characterization of Fuel Cell Materials ... 680
VB.1 Oak Ridge National Laboratory: Water Transport Exploratory Studies ... 706
V.B.1 University of Tennessee: Water Transport Exploratory Studies .. 706
V.D.2 University of Tennessee: Membranes and MEAs for Dry, Hot Operating Conditions 748
V.D.6 Vanderbilt University: NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells ... 767
V.D.9 Oak Ridge National Laboratory: Improved, Low-Cost, Durable Fuel Cell Membranes 782
Tennessee (Continued)

V.E.3 Oak Ridge National Laboratory: Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells .. 805
V.E.4 Oak Ridge National Laboratory: Non-Platinum Bimetallic Cathode Electro catalysts ... 811
V.E.5 Oak Ridge National Laboratory: Advanced Cathode Catalysts ... 816
V.E.6 Oak Ridge National Laboratory: Durable Catalysts for Fuel Cell Protection during Transient Conditions .. 825
V.E.7 Oak Ridge National Laboratory: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes .. 830
V.E.7 University of Tennessee: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes .. 830
V.E.8 Oak Ridge National Laboratory: Nanosegregated Cathode Alloy Catalysts with Ultra-Low Platinum Loading .. 835
V.H.2 Oak Ridge National Laboratory: Durability Improvements through Degradation Mechanism Studies .. 881
V.H.4 Oak Ridge National Laboratory: Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data .. 890
V.H.5 Oak Ridge National Laboratory: Accelerated Testing Validation .. 895
V.L.1 Oak Ridge National Laboratory: Nitrided Metallic Bipolar Plates .. 925
V.N.3 Oak Ridge National Laboratory: Engineered Nano-Scale Ceramic Supports for PEM Fuel Cells .. 971
V.P.4 University of Tennessee: The Study of Proton Transport Using Reactive Molecular Dynamics .. 1027
V.P.5 Vanderbilt University: Surface-Directed Fabrication of Integrated Membrane-Electrode Interfaces .. 1029
V.I.4 University of Tennessee: Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning .. 1139
V.II.4 University of Tennessee: HyTrans Model: Analyzing the Potential for Stationary Fuel Cells to Augment Hydrogen Availability in the Transition to Hydrogen Vehicles ... 1187
IX.15 Oak Ridge National Laboratory: Optically Read MEMS Hydrogen Sensor .. 1366
V.P.31 University of Tennessee: The Dielectric Response of Hydrated PFSA membranes – Measurements with Single Post Dielectric Resonators .. 1118

Texas

II.D.4 Southwest Research Institute®: Amorphous Alloy Membranes for High Temperature Hydrogen Separation .. 86
II.I.6 Lynntech, Inc.: Design, Optimization and Fabrication of a Home Hydrogen Fueling System .. 252
III.4 Texas A&M University: Development of a Centrifugal Hydrogen Pipeline Gas Compressor .. 267
IV.C.1b Texas A&M University: A Biomimetic Approach to Metal-Organic Frameworks with High H2 Uptake .. 468
IV.H.1 University of Texas: NaSi and Na-SG Powder Hydrogen Fuel Cells .. 628
IV.I.1 Southwest Research Institute®: Standardized Testing Program for Solid-State Hydrogen Storage Technologies .. 647
V.B.1 University of Texas at Austin: Water Transport Exploratory Studies .. 706
V.E.2 Texas A&M University: Highly Dispersed Alloy Catalyst for Durability .. 799
XVI. Project Listings by State

Texas (Continued)

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.E.7</td>
<td>University of Texas at Austin: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes</td>
</tr>
<tr>
<td>V.H.1</td>
<td>University of Texas at Austin: Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation</td>
</tr>
<tr>
<td>V.P.20</td>
<td>Texas Tech University: Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures</td>
</tr>
<tr>
<td>V.P.24</td>
<td>University of Houston: Development and Mechanistic Characterization of Alloy Fuel Cell Catalysts</td>
</tr>
<tr>
<td>V.P.25</td>
<td>Texas A&M University: Metal dissolution mechanisms in Pt-based alloys: Ideas for advanced PEM cathode design</td>
</tr>
<tr>
<td>VIII.2</td>
<td>Chevron Technology Ventures LLC: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project</td>
</tr>
<tr>
<td>VIII.10</td>
<td>Texas H2 Coalition: Texas Hydrogen Highway</td>
</tr>
<tr>
<td>VIII.10</td>
<td>University of Texas at Austin: Texas Hydrogen Highway</td>
</tr>
<tr>
<td>VIII.10</td>
<td>Houston Advanced Research Center: Texas Hydrogen Highway</td>
</tr>
<tr>
<td>IX.8</td>
<td>William C. Fort: Hydrogen Safety Panel</td>
</tr>
<tr>
<td>X.9</td>
<td>Houston Advanced Research Center: Hydrogen Education in Texas</td>
</tr>
<tr>
<td>X.9</td>
<td>Texas H2 Coalition: Hydrogen Education in Texas</td>
</tr>
<tr>
<td>XI.10</td>
<td>Sysco of Houston: Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment</td>
</tr>
</tbody>
</table>

Utah

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.E.1</td>
<td>HyPerComp Engineering, Inc.: High-Capacity, High-Pressure Electrolysis System with Renewable Power Sources</td>
</tr>
<tr>
<td>II.I.8</td>
<td>Materials and Systems Research, Inc.: Development of a Hydrogen Home Fueling System</td>
</tr>
<tr>
<td>V.P.26</td>
<td>University of Utah: Mechanism of Proton Transport in Proton Exchange Membranes: Insights from Computer Simulation</td>
</tr>
</tbody>
</table>

Vermont

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.D.5</td>
<td>Metal Hydride Technologies, Inc.: Experimental Demonstration of Advanced Palladium Membrane Separators for Central High-Purity Hydrogen Production</td>
</tr>
<tr>
<td>X.15</td>
<td>Clean Energy States Alliance: Hydrogen Education State Partnership Program</td>
</tr>
</tbody>
</table>

Virginia

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.A.5</td>
<td>Directed Technologies, Inc.: Distributed Reforming of Renewable Liquids Using Oxygen Transport Membranes</td>
</tr>
<tr>
<td>II.E.2</td>
<td>Virginia Polytechnic Institute and State University: PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane</td>
</tr>
<tr>
<td>II.I.3</td>
<td>Directed Technologies, Inc.: Aqueous Phase Base-Facilitated Reforming (BFR) of Renewable Fuels</td>
</tr>
<tr>
<td>IV.G.3</td>
<td>Virginia Polytechnic Institute and State University: High Strength Carbon Fibers</td>
</tr>
<tr>
<td>V.A.2</td>
<td>Directed Technologies, Inc.: Mass-Production Cost Estimation for Automotive Fuel Cell Systems</td>
</tr>
<tr>
<td>V.D.9</td>
<td>Virginia Polytechnic Institute and State University: Improved, Low-Cost, Durable Fuel Cell Membranes</td>
</tr>
<tr>
<td>V.L.4</td>
<td>Virginia Polytechnic Institute and State University: Low-Cost Durable Seals for PEMFCs</td>
</tr>
<tr>
<td>V.M.5</td>
<td>Virginia Polytechnic Institute and State University: Transport Studies and Modeling in PEM Fuel Cells</td>
</tr>
<tr>
<td>V.P.10</td>
<td>University of Virginia: Theoretical Insights Into Active and Durable Oxygen Reduction Catalysts</td>
</tr>
<tr>
<td>VII.10</td>
<td>Directed Technologies, Inc.: Macro System Model</td>
</tr>
</tbody>
</table>
Virginia (Continued)

X.11 Commonwealth of Virginia: VA-MD-DC Hydrogen Education Education for Decision Makers1414
X.17 National Energy Education Development Project: H$_2$ Educate – Middle School Hydrogen Education Program ...1432
X.II.12 Sprint Nextel: Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network1472

Washington

II.A.2 Pacific Northwest National Laboratory: Distributed Hydrogen Production from Biomass Reforming ...29
III.6 Prometheus Energy: Active Magnetic Regenerative Liquefier ...278
III.14 Pacific Northwest National Laboratory: Reversible Liquid Carriers for an Integrated Production, Storage and Delivery of Hydrogen ..314
III.15 DGS Metallurgical Solutions, Inc: Materials Solutions for Hydrogen Delivery in Pipelines318
IV.B.1d Pacific Northwest National Laboratory: Chemical Hydrogen Storage Research at PNNL453
IV.D.1a Pacific Northwest National Laboratory: Hydrogen Storage Engineering Center of Excellence514
IV.D.1b Pacific Northwest National Laboratory: Systems Engineering of Chemical Hydride, Pressure Vessel, and Balance of Plant for On-Board Hydrogen Storage ..519
V.E.3 Pacific Northwest National Laboratory: Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells ..805
V.I.2 PACCAR, Inc.: Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications ...907
V.P.14 Pacific Northwest National Laboratory: Bio-Inspired Molecular Catalysts for Hydrogen Oxidation and Hydrogen Production ...1062
V.P.29 Pacific Northwest National Laboratory: Charge Transfer, Transport, and Reactivity in Complex Molecular Environments: Theoretical Studies for the Hydrogen Fuel Initiative1112
VI.3 Pacific Northwest National Laboratory: Modular, High-Volume Fuel Cell Leak-Test Suite and Process ..1135
VI.10 Boeing Research and Technology: Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels ...1165
VII.13 Pacific Northwest National Laboratory: Pathways to Commercial Success: Technologies and Products Supported by the FCT Program ...1228
IX.6 Pacific Northwest National Laboratory: Hydrogen Safety Knowledge Tools1332
IX.8 Pacific Northwest National Laboratory: Hydrogen Safety Panel ... 1338
IX.13 Pacific Northwest National Laboratory: Hydrogen Safety Training for First Responders1560
IX.13 Volpentest HAMMER Training and Education Center: Hydrogen Safety Training for First Responders ..1560
X.1 Pacific Northwest National Laboratory: Hydrogen Safety Training for First Responders 1379
X.1 Volpentest HAMMER Training and Education Center: Hydrogen Safety Training for First Responders ..1379
XI.2 PACCAR, Inc.: Solid Oxide Fuel Cell Diesel Auxiliary Power Unit Demonstration1446
XI.12 ReliOn, Inc.: Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network1472

Washington D.C.

V.P.11 Georgetown University: An in situ Electrode-Potential-Controlled Nuclear Magnetic Resonance Investigation of Sulfur-Poisoning Effect on Pt-Based Mono- and Bi-metallic Nanoscale Electrocatalysts ...1051
Washington, D.C. (Continued)

VII.12 Brookhaven National Laboratory: CO2 Reduction Benefits Analysis for Fuel Cell Applications ... 1223
X.14 Technology Transition Corporation: H2L3: Hydrogen Learning for Local Leaders ... 1422
X.14 Public Technology Institute: H2L3: Hydrogen Learning for Local Leaders ... 1422

Wisconsin

V.H.1 University of Wisconsin, Madison: Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation ... 876
V.P.6 University of Wisconsin, Madison: Activity and Stability of Nanoscale Pt-based Catalysts ... 1033
V.P.21 University of Wisconsin, Madison: Atomic-scale Design of a New Class of Alloy Catalysts for Reactions Involving Hydrogen: A Theoretical and Experimental Approach ... 1084

Wyoming

II.D.4 Western Research Institute: Amorphous Alloy Membranes for High Temperature Hydrogen Separation ... 86
II.J.2 University of Wyoming: Purdue Hydrogen Systems Laboratory: Hydrogen Production ... 245
IV.H.2 University of Wyoming: Purdue Hydrogen Systems Laboratory: Hydrogen Storage ... 632

Foreign Countries

Canada

IV.A.1b University of New Brunswick: Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides ... 364
IV.D.1a University of Québec: Hydrogen Storage Engineering Center of Excellence ... 514
IV.D.1c HSM Systems, Inc.: Advancement of Systems Designs and Key Engineering Technologies for Materials-Based Hydrogen Storage ... 524
IV.D.1h Université du Québec à Trois-Rivières: SRNL Technical Work Scope for the Hydrogen Storage Engineering Center of Excellence ... 551
V.B.2 University of Victoria: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization ... 711
V.E.1 Dalhousie University: Advanced Cathode Catalysts and Supports for PEM Fuel Cells ... 790
V.E.3 AFC Automotive Fuel Cell Cooperation Corporation: Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells ... 805
V.E.6 Dalhousie University: Durable Catalysts for Fuel Cell Protection during Transient Conditions ... 825
V.H.2 Ballard Power Systems: Durability Improvements through Degradation Mechanism Studies ... 881
V.H.5 Ballard Power Systems: Accelerated Testing Validation ... 895
V.H.6 Ballard Power Systems: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches ... 899
V.H.6 Queen's University: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches ... 899
V.K.2 dPoint Technologies, Inc.: Materials and Modules for Low-Cost, High-Performance Fuel Cell Humidifiers ... 922
V.M.1 Ballard Power Systems: Air-Cooled Stack Freeze Tolerance ... 943
V.M.3 Ballard Power Systems: Development and Validation of a Two-Phase, Three-dimensional Model for PEM Fuel Cells ... 952
VI.2 Ballard Power Systems: Reduction in Fabrication Costs of Gas Diffusion Layers ... 1131
Canada (Continued)

X.8 Hydrogenics: Dedicated to The Continued Education, Training and Demonstration of PEM Fuel Cell Powered Lift Trucks In Real-World Applications ... 1404

Germany

IV.D.1a BASF GmbH: Hydrogen Storage Engineering Center of Excellence .. 514
IV.D.1g BASF-SE: Ford/BASF-SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence .. 546
V.B.1 SGL Technologies GmbH: Water Transport Exploratory Studies ... 706
V.F.1 SGL Carbon: CIRRUS: Cell Ice Regulation & Removal Upon Start-Up 857
VIII.3 Daimler: Hydrogen to the Highways ... 1264

Greece

IV.C.1e Thanos Stubos: NREL Research as Part of the Hydrogen Sorption Center of Excellence 486

Japan

III.3 Mitsubishi Heavy Industries, Ltd: Oil-Free Centrifugal Hydrogen Compression Technology Demonstration ... 263

Portugal

IV.G.3 Fibras Sinteticas de Portugal, SA: High Strength Carbon Fibers ... 622

Russia

II.H.2 Institute of Basic Biological Problems: Biological Systems for Hydrogen Photoproduction 198

South Korea

VIII.2 Hyundai Motor Company: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project .. 1261
VIII.2 Kia Motors Corporation: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project .. 1261

UK

II.E.2 Parker Hannifin Ltd: PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane 103
V.E.2 Johnson-Matthey Fuel Cells: Highly Dispersed Alloy Catalyst for Durability 799
V.E.9 Johnson Matthey Fuel Cells: Contiguous Platinum Monolayer Oxygen Reduction Electro catalysts on High-Stability Low-Cost Supports 841
V.H.1 Johnson Matthey Fuel Cells: Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electro catalyst Degradation ... 876
V.J.3 Johnson Matthey Fuel Cells: New MEA Materials for Improved DMFC Performance, Durability, and Cost .. 917