V.D.12 High-Activity Dealloyed Catalysts

Frederick T. Wagner (Primary Contact),
Anusorn Kongkanand
General Motors, LLC (GM)
10 Carriage St.
Honeoye Falls, NY 14472
Phone: (585) 624-6726
Email: frederick.t.wagner@gm.com

DOE Managers
HQ: Dimitrios Papageorgopoulos
Phone: (202) 586-5463
Email: Dimitrios.Papageorgopoulos@ee.doe.gov
GO: Gregory Kleen
Phone: (720) 356-1672
Email: Gregory.Kleen@go.doe.gov

Contract Number: DE-EE0000458

Subcontractors:
• George Washington University (GWU), Washington, D.C.
• Johnson Matthey Fuel Cells (JMFC), Sonning Common, UK
• Massachusetts Institute of Technology (MIT), Cambridge, MA
• Northeastern University (NEU), Boston, MA
• Technical University Berlin (TUB), Berlin, Germany

Project Start Date: August 1, 2010
Project End Date: November 30, 2013

Fiscal Year (FY) 2012 Objectives

• Demonstrate, in 50-cm² membrane electrode assemblies (MEAs) in fuel cells, a dealloyed catalyst both (1) giving an initial oxygen reduction activity ≥0.44 A/mg PGM and (2) losing less than 40% of that activity after 30,000 voltage cycles from 0.6 to 1.0 V.
• Optimize manufacturable procedures for precursor synthesis and dealloying of the catalyst powders.
• Demonstrate electrodes made from dealloyed catalysts that give good high current density performance using air as the oxidant: >570 mV at 1.5 A/cm² when tested with the DOE-targeted cathode loadings ≤0.1 mg PGM/cm².
• Improve understanding of where alloying-element atoms should reside with respect to the surface of the catalyst particle for simultaneously good activity, durability, and high-current-density performance in air.

Technical Barriers

This project addresses the following technical barriers from the Technical Plan—Fuel Cells section of the Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan:

(B) Cost
(A) Durability
(C) Performance

Technical Targets

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Units</th>
<th>2017 DOE Stack Targets</th>
<th>Project 2012 Status (50 cm² at GM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass activity</td>
<td>A/mg PGM @ 900 mV IR-free</td>
<td>≥0.44</td>
<td>0.52 (PtNi₃) 0.46 (PtCo₃)</td>
</tr>
<tr>
<td>Loss in catalytic (mass) activity</td>
<td>% lost after 30k cycles 0.6-1.0 V</td>
<td>≤40%</td>
<td>28% (PtCo₃) 69% (PtNi₃)</td>
</tr>
<tr>
<td>PGM Total Content</td>
<td>gPgm/kW rated</td>
<td>≤0.125</td>
<td>0.16 (PtNi₃) @1.5 A/cm² in H₂/air</td>
</tr>
<tr>
<td>PGM Total Loading</td>
<td>mgPgm/cm² geo</td>
<td>≤0.125</td>
<td>0.15 (0.05 on anode)</td>
</tr>
<tr>
<td>Performance @ rated power</td>
<td>mW/cm²</td>
<td>1,000</td>
<td>940</td>
</tr>
<tr>
<td>Performance @ rated power</td>
<td>mA/cm²</td>
<td>300</td>
<td>200</td>
</tr>
</tbody>
</table>

PGM - Platinum group metal

FY 2012 Accomplishments

• Developed catalysts achieving initial mass activities of 0.52 (dealloyed PtNi₃) and 0.46 A/mg PGM (D-PtCo₃), exceeding the target of ≥0.44, with better durability and high-current-density performance than the D-PtCu₃ reported last year.
• The small-batch GM D-PtCo₃ lost only 38% percent of its initial activity after 30,000 cycles 0.6-1.0 V, bettering the target of <40% loss and giving more than a 2-fold improvement vs. last year’s D-PtCu₃. The durability of the dealloyed large-batch JMFC PtNi₃ tested to date, while better than that of D-PtCu₃, still needs improvement.
• MEAs made with large-batch D-PtNi₃ at 0.1 mg PGM/cm² matched or bettered, at all current densities on H₂/air, the initial performance of those made with baseline Pt/carbon at 0.4 mg PGM/cm². They thereby demonstrate a pathway to the Pt-cost reduction needed for mass
production of fuel cells, if the durability limitations seen to date with this material can be overcome.

\[
\text{Introduction}
\]

The amount of expensive platinum used as the oxygen reduction catalyst in fuel cells must be reduced about 4-fold to make proton exchange membrane fuel cells (PEMFCs) cost-competitive with other power sources. Pt-alloy catalysts, typically prepared with a composition of Pt-M (M being a non-precious metal) have historically provided about half of the necessary activity gain vs. state-of-the-art pure-Pt/carbon catalysts. Prior to this project, team member Peter Strasser’s group had shown, in small-scale laboratory experiments, that additional activity gains could be obtained by first synthesizing alloys with excess M and then removing most of the M by an electrochemical treatment [1]. They hypothesized that this treatment leaves the surface Pt atoms closer to one another than they are in pure Pt, causing electronic structure changes that accelerate the reduction of oxygen [2]. This project has developed manufacturable means of scaling up these dealloyed catalysts, confirming that most of the activity gains seen in ex situ laboratory experiments can also be achieved in practical fuel cells at GM which satisfy the DOE catalyst activity target. However, we identified severe problems: (1) lack of durability and (2) poor performance in hydrogen/air fuel cells at high current density, associated with the use of the alloying element, copper, which had seemed most attractive in ex situ experiments. In FY 2012 we have successfully shifted to other alloying elements, cobalt and nickel, which avoid one of the mechanisms whereby copper caused problems. Made in small batches, several dealloyed PtCo catalysts satisfied DOE catalyst targets for both activity and durability in GM fuel cells. Larger-scale dealloyed PtNi\(_3\) catalysts have to date satisfied the DOE activity target and the project milestone for high current density performance in GM fuel cells. We continue to pursue ideas to solve the durability shortfall that we have seen to date for the large-scale dealloyed PtNi\(_3\) materials.

\[
\text{Approach}
\]

Project member Peter Strasser’s group had demonstrated, in ex situ experiments prior to this project, that electrochemical removal of most of the non-noble alloying element M from Pt-alloy precursors with initial composition of PtM\(_3\), could give higher oxygen reduction activities than the ~2-3-fold improvement vs. Pt alone that had historically been seen for Pt-alloy catalysts directly prepared at a composition of Pt-M. Last year, this project demonstrated that this improved activity could be achieved in MEAs tested in fuel cells with PtCu, dealloyed as a catalyst powder using manufacturable chemical methods. However, GM found the durability of the D-PtCu\(_3\) to be very poor. Also, amounts of Cu (remaining after dealloying) sufficient to give good initial kinetic activity gave very poor performance in H\(_2\)/air fuel cells at high current density. The latter effect was due in part to Cu\(^{2+}\) crossing from the cathode through the membrane to the anode, where it plated out as Cu metal and blocked the H\(_2\) oxidation reaction. This year extensive work was done, optimizing manufacturable methods, to generate dealloyed catalysts and cathode electrodes using two alloying elements, Co and Ni, which do not plate out as the metals at the hydrogen potential in the acidic electrolyte of a PEMFC. Advanced electron microscopy and synchrotron X-ray techniques were applied to aged electrodes to correlate atomic-scale structure and composition with differences in activity and durability between individual catalysts, thereby guiding the further development of durably active catalysts.

\[
\text{Results}
\]

Figure 1 shows that GM-made small-batch D-PtCo\(_3\) and D-PtCo catalysts met, in 50-cm\(^2\) fuel cells at GM, both the initial activity and the durability DOE 2017 targets shown in Table 1, as well as outperforming a commercial Pt\(_3\)Co catalyst subjected to the same test procedures. These results show that a dealloyed catalyst can simultaneously meet the DOE numerical targets for kinetic activity and durability. However, insufficient quantities of these catalysts could be prepared to allow testing in multiple laboratories and at different loadings. The intention of this project is for JMFC, as an established catalyst manufacturer, to generate the primary materials for investigation so as to facilitate eventual commercial availability of the advanced catalysts developed.

\[
\text{FIGURE 1. ORR Pt mass activities measured in GM 50-cm}^2 \text{ H}_2/\text{O}_2 \text{ fuel cells at standard conditions for three catalysts, at 0.2 mgPt/cm}^2 \text{ loadings, as a function of the number of 0.6-1.0 V triangle-wave potential cycles at 50 mV/s in fully-humidified H}_2/N_2 \text{ at 80°C. “Activity target” (see Table 1) is judged at 0 cycles; “Durability target” is judged at 30,000 cycles. Error bars show range of 3 MEAs/point.}
\]
Based on some preliminary data from TUB suggesting that the Pt-Ni system could be superior to the Pt-Co, JMFC generated several large (~100 g) batches of PtNi₃ precursors. GM chemically dealloyed this material in 1 M HNO₃ for different times and temperatures, yielding catalyst powders with the compositions labeled for individual sets of points in Figure 2. GM fabricated 50-cm² MEAs from these powders, giving the initial (after break-in) activities shown in Figure 2. While the initial oxygen reduction reaction (ORR) activity dropped as more Ni was removed from the precursor with more aggressive dealloying, the activity remained above the DOE target for a wide range of final catalyst compositions. This provides us with the freedom to optimize for other properties such as durability and high-current-density performance.

Figure 3 shows that the durability against voltage cycling of the large-batch D-PtNi₃ catalyst dealloyed for 1 day at 70°C did not meet the DOE target. Transmission electron microscopy of the fresh and cycled MEAs showed that this catalyst had a spongy, hole-riddled structure in all sizes of particles, and extended X-ray absorption fine structure (EXAFS) of these electrodes showed little evidence of Pt-Ni bonding, though a fair amount of Ni remained in the catalyst. In contrast, the more durable small-batch D-PtCo₃ catalyst had shown much more Pt-M binding in EXAFS, and detailed atomic-scale elemental mapping with electron energy loss spectroscopy had shown Pt-Co cores within Pt shells, as well as some pores, in all particle sizes [3]. We hypothesize that the alloy cores of this D-PtCo₃ catalyst improved its durability vs. the more porous, percolated structure of this D-PtNi₃ (Ni and Co have similar corrosion chemistry); and we are trying a range of different dealloying conditions to promote more of a core-shell structure as a means of improving durability in the PtNi system.

While the durability of the kinetic activity of the large-batch D-PtNi₃ has so far been disappointing, its initial performance at high current density in air has been quite good, particularly in light of the lack of optimization of cathode electrode structure to date. Figure 4 shows that the 50-cm² MEA performance in H₂/air of 0.1 mg_{Pt}/cm² D-PtNi₃...
dealloyed to a point that still satisfies the initial activity target, matches or exceeds that of MEAs with a 0.4 mg/cm² loading of a conventional Pt/Vulcan carbon catalyst at all points of the polarization curve. In contrast, D-PtCu, with enough Cu left to give good kinetic activity gave very poor performance in air at high current density. The benefits of the shift from Cu to a less-noble alloying element are clear. Detailed alternating-current impedance studies have shown that the higher high-frequency resistance values for the PtCu electrode were due to an additional impedance loop caused by the poisoning of most of the anode surface with metallic copper. The D-PtNi data in Figure 4 satisfy the project milestone for the initial high-current-density performance, but we still need to further optimize the electrodes to fully comply with the more recent DOE electrode performance targets shown in the last two lines of Table 1.

Conclusions and Future Directions

- D-PtNi is looking good for initial kinetic activity and high-current-density performance.
- Working to improve durability of D-PtNi by:
 - Modifying dealloying conditions to promote core/shell vs. percolated structure.
 - JMFC is running diverse precursor preparation techniques to improve particle-size uniformity.
 - Adding third components to control dealloying process.
 - TUB is controlling facet exposure, adding third components to limit activity loss.
- MIT is investigating how relative positions in electrochemical series and metal-Pt binding strengths influence dealloying.
- Once durability of kinetic activity is under control, will scale up to full-active-area fuel cells to test durability of high-current-density performance.

FY 2012 Publications/Presentations

References