FY 2015
PROGRESS REPORT FOR THE DOE
HYDROGEN AND FUEL CELLS PROGRAM

December 2015
DOE/GO-102015-4731

Approved by Sunita Satyapal, Director, Hydrogen and Fuel Cells Program
NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@adonis.osti.gov

Available for sale to the public, in paper, from:
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Phone: (800) 553-6847
Fax: (703) 605-6900
Email: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste
Table of Contents

I. Introduction .. I–1

II. Hydrogen Production .. II–1
 II.0 Hydrogen Production Sub-Program Overview .. II–3
 II.A Hydrogen Production Analysis .. II–11
 II.A.1 Strategic Analysis, Inc.: Hydrogen Pathways Analysis for Solid Oxide Fuel Cell (SOFC) and Dark Fermentation .. II–11
 II.B Electrolysis ... II–18
 II.B.2 Giner, Inc.: High-Performance, Long-Lifetime Catalysts for Proton Exchange Membrane Electrolysis .. II–23
 II.B.3 Proton OnSite: Low-Noble-Metal-Content Catalysts/Electrodes for Hydrogen Production by Water Electrolysis .. II–28
 II.B.4 Giner, Inc.: High Temperature, High Pressure Electrolysis II–31
 II.C High-Temperature Thermochemical .. II–35
 II.C.1 Sandia National Laboratories: High Efficiency Solar Thermochemical Reactor for Hydrogen Production .. II–35
 II.C.2 University of Colorado Boulder: Flowing Particle Bed Solarthermal Redox Process to Split Water .. II–41
 II.C.3 Savannah River National Laboratory: Electrolyzer Component Development for the HyS Thermochemical Cycle ... II–46
 II.C.5 University of Hawaii: Wide Bandgap Chalcopyrite Photoelectrodes for Direct Water Splitting .. II–56
 II.C.6 University of Colorado: Accelerated Discovery of Advanced RedOx Materials for Solar Thermal Water Splitting to Produce Renewable Hydrogen .. II–60
 II.D Photoelectrochemical ... II–67
 II.D.1 The University of Toledo: New Metal Oxides for Efficient Hydrogen Production via Solar Water Splitting .. II–67
 II.D.2 Rutgers, the State University of New Jersey: Tunable Photoanode-Photocathode-Catalyst Interface Systems for Efficient Solar Water Splitting II–72
 II.E Biological ... II–76
 II.E.1 National Renewable Energy Laboratory: Fermentation and Electrohydrogenic Approaches to Hydrogen Production .. II–76
 II.E.2 National Renewable Energy Laboratory: Improving Cyanobacterial O₂-Tolerance Using CBS Hydrogenase for H₂ Production II–81
 II.F Separations and Bio-Feedstock Conversion ... II–84
 II.F.1 Pacific Northwest National Laboratory: Monolithic Piston-Type Reactor for Hydrogen Production through Rapid Swing of Reforming/Combustion Reactions .. II–84
 II.F.2 FuelCell Energy, Inc.: Reformer-Electrolyzer-Purifier (REP) for Production of Hydrogen ... II–90

III. Hydrogen Delivery ... III–1
 III.0 Hydrogen Delivery Sub-Program Overview ... III–3
 III.1 Argonne National Laboratory: Hydrogen Delivery Infrastructure Analysis III–9
 III.2 Oak Ridge National Laboratory: Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage .. III–13
 III.3 Sandia National Laboratories: Hydrogen Embrittlement of Structural Steels III–18
Table of Contents

III. Hydrogen Delivery (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Project/Institution</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.4</td>
<td>Savannah River National Laboratory</td>
<td>Fiber Reinforced Composite Pipeline</td>
<td>III–22</td>
</tr>
<tr>
<td>III.5</td>
<td>Hexagon Lincoln</td>
<td>Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery</td>
<td>III–25</td>
</tr>
<tr>
<td>III.6</td>
<td>NanoSonic, Inc.</td>
<td>Cryogenically Flexible, Low Permeability H₂ Delivery Hose</td>
<td>III–28</td>
</tr>
<tr>
<td>III.7</td>
<td>Southwest Research Institute</td>
<td>Hydrogen Compression Application of the Linear Motor Reciprocating Compressor (LMRC)</td>
<td>III–33</td>
</tr>
<tr>
<td>III.8</td>
<td>Oak Ridge National Laboratory</td>
<td>Steel Concrete Composite Vessel for 875 Bar Stationary Hydrogen Storage</td>
<td>III–40</td>
</tr>
<tr>
<td>III.9</td>
<td>Wiretough Cylinders, LLC</td>
<td>Low Cost Hydrogen Storage at 875 Bar Using Steel Liner and Steel Wire Wrap</td>
<td>III–45</td>
</tr>
<tr>
<td>III.11</td>
<td>Sandia National Laboratories</td>
<td>Reference Station Design</td>
<td>III–53</td>
</tr>
<tr>
<td>III.12</td>
<td>Argonne National Laboratory</td>
<td>Hydrogen Fueling Station Precooling Analysis</td>
<td>III–57</td>
</tr>
<tr>
<td>III.13</td>
<td>National Renewable Energy Laboratory</td>
<td>700-Bar Hydrogen Dispenser Hose Reliability and Improvement</td>
<td>III–60</td>
</tr>
<tr>
<td>III.14</td>
<td>Pacific Northwest National Laboratory</td>
<td>Magnetocaloric Hydrogen Liquefaction</td>
<td>III–65</td>
</tr>
</tbody>
</table>

IV. Hydrogen Storage

<table>
<thead>
<tr>
<th>Section</th>
<th>Project/Institution</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.0</td>
<td>Hydrogen Storage Sub-Program Overview</td>
<td></td>
<td>IV–1</td>
</tr>
<tr>
<td>IV.A</td>
<td>Analysis</td>
<td></td>
<td>IV–3</td>
</tr>
<tr>
<td>IV.A.1</td>
<td>Argonne National Laboratory</td>
<td>System Analysis of Physical and Materials-Based Hydrogen Storage</td>
<td>IV–11</td>
</tr>
<tr>
<td>IV.A.2</td>
<td>Strategic Analysis, Inc.</td>
<td>Hydrogen Storage Cost Analysis</td>
<td>IV–17</td>
</tr>
<tr>
<td>IV.B</td>
<td>Engineering – HSECoE</td>
<td></td>
<td>IV–22</td>
</tr>
<tr>
<td>IV.B.1</td>
<td>Savannah River National Laboratory</td>
<td>Hydrogen Storage Engineering Center of Excellence</td>
<td>IV–22</td>
</tr>
<tr>
<td>IV.B.4</td>
<td>United Technologies Research Center</td>
<td>Advancement of Systems Designs and Key Engineering Technologies for Materials-Based Hydrogen Storage</td>
<td>IV–36</td>
</tr>
<tr>
<td>IV.B.5</td>
<td>Pacific Northwest National Laboratory</td>
<td>Systems Engineering of Chemical Hydrogen Storage and Cryo-Sorbent Storage, Pressure Vessel, and Balance of Plant for Onboard Hydrogen Storage</td>
<td>IV–44</td>
</tr>
<tr>
<td>IV.B.7</td>
<td>Hexagon Lincoln Inc.</td>
<td>Development of Improved Composite Pressure Vessels for Hydrogen Storage</td>
<td>IV–53</td>
</tr>
<tr>
<td>IV.B.8</td>
<td>Los Alamos National Laboratory</td>
<td>Chemical Hydride Rate Modeling, Validation, and System Demonstration</td>
<td>IV–56</td>
</tr>
<tr>
<td>IV.B.9</td>
<td>General Motors R&D Center</td>
<td>Testing, Modeling, and Evaluation of Innovative Hydrogen Storage System Designs</td>
<td>IV–59</td>
</tr>
<tr>
<td>IV.C</td>
<td>Hydrogen Storage Materials</td>
<td></td>
<td>IV–63</td>
</tr>
<tr>
<td>IV.C.1</td>
<td>Lawrence Berkeley National Laboratory</td>
<td>Hydrogen Storage in Metal-Organic Frameworks</td>
<td>IV–63</td>
</tr>
<tr>
<td>IV.C.2</td>
<td>National Renewable Energy Laboratory</td>
<td>Hydrogen Sorbent Measurement Qualification and Characterization</td>
<td>IV–70</td>
</tr>
<tr>
<td>IV.C.3</td>
<td>National Institute of Standards and Technology</td>
<td>Neutron Characterization in Support of the DOE Hydrogen Storage Sub-Program</td>
<td>IV–76</td>
</tr>
<tr>
<td>IV.C.4</td>
<td>Ames Laboratory</td>
<td>High-Capacity Hydrogen Storage Systems via Mechanochemistry</td>
<td>IV–81</td>
</tr>
<tr>
<td>IV.C.5</td>
<td>Savannah River National Laboratory</td>
<td>Electrochemical Reversible Formation of α-Alane</td>
<td>IV–84</td>
</tr>
</tbody>
</table>
IV. Hydrogen Storage (Continued)

IV.C Hydrogen Storage Materials (Continued)

IV.C.6 Ardica Technologies, Inc.: Low-Cost α-Alane for Hydrogen Storage .. IV–88
IV.C.7 Boston College: Novel Carbon(C)-Boron(B)-Nitrogen(N)-Containing H$_2$ Storage Materials IV–92
IV.C.8 HRL Laboratories, LLC: Boron-Based Hydrogen Storage: Ternary Borides and Beyond IV–97
IV.C.9 Lawrence Livermore National Laboratory: Improving the Kinetics and Thermodynamics of Mg(BH)$_3$ for Hydrogen Storage .. IV–101

IV.D Advanced Tanks .. IV–108

IV.D.2 Lawrence Livermore National Laboratory: Thermomechanical Cycling of Thin Liner High Fiber Fraction Cryogenic Pressure Vessels Rapidly Refueled by LH2 Pump to 700 bar IV–113
IV.D.3 Pacific Northwest National Laboratory: Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks ... IV–118
IV.D.5 Oak Ridge National Laboratory: Melt Processable PAN Precursor for High Strength, Low Cost Carbon Fibers (Phase II) .. IV–126
IV.D.6 PPG Industries, Inc.: Achieving Hydrogen Storage Goals through High-Strength Fiber Glass ... IV–134
IV.D.7 Composite Technology Development, Inc.: Optimizing the Cost and Performance of Composite Cylinders for H$_2$ Storage Using a Graded Construction IV–138

IV.E Basic Energy Sciences .. IV–143

IV.E.1 Ames Laboratory: Complex Hydrides — A New Frontier for Future Energy Applications IV–143
IV.E.2 Savannah River National Laboratory: Elucidation of Hydrogen Interaction Mechanisms with Metal-Doped Carbon Nanostructures ... IV–144
IV.E.3 University of California, Davis: Activation of Hydrogen under Ambient Conditions by Main Group Molecules ... IV–145
IV.E.4 Virginia Commonwealth University: Elucidation of Hydride Interaction Mechanisms with Carbon Nanostructures and the Formation of Novel Nanocomposites IV–146

V. Fuel Cells .. V–1

V.0 Fuel Cells Sub-Program Overview V–3

V.A Catalysts & Electrodes ... V–9

V.A.1 National Renewable Energy Laboratory: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes ... V–9
V.A.2 Argonne National Laboratory: Nanosegregated Cathode Alloy Catalysts with Ultra-Low Platinum Loading ... V–13
V.A.3 Brookhaven National Laboratory: Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability, Low-Cost Supports V–20
V.A.5 Northeastern University: Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications V–29
V.A.6 University of South Carolina: Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells .. V–37
V.A.7 Los Alamos National Laboratory: Non-Precious Metal Fuel Cell Cathodes: Catalyst Development and Electrode Structure Design .. V–43
V.A.9 Proton OnSite: Non-Platinum Group Metal OER/ORR Catalysts for Alkaline Membrane Fuel Cells and Electrolyzers .. V–56
V. Fuel Cells (Continued)

V.A Catalysts & Electrodes (Continued)
V.A.10 pH Matter, LLC: Non-Precious Metal Bi-Functional Catalysts .. V–60

V.B Membranes & Electrolytes .. V–64
V.B.1 3M Company: New Fuel Cell Membranes with Improved Durability and Performance V–64
V.B.2 Colorado School of Mines: Advanced Hybrid Membranes for Next Generation PEMFC
 Automotive Applications .. V–69

V.C MEAs, Cells, & Other Stack Components .. V–73
V.C.1 3M Company: High Performance, Durable, Low Cost Membrane Electrode Assemblies for
 Transportation Applications .. V–73
V.C.2 Argonne National Laboratory: Rationally Designed Catalyst Layers for PEMFC Performance
 Optimization ... V–80
V.C.3 TreadStone Technologies, Inc.: Novel Structured Metal Bipolar Plates for Low Cost
 Manufacturing .. V–86
V.C.4 National Renewable Energy Laboratory: Advanced Ionomers and MEAs for Alkaline
 Membrane Fuel Cells .. V–92

V.D Balance of Plant Components ... V–96
V.D.1 Eaton Corporation: Roots Air Management System with Integrated Expander V–96

V.E System, Stack, and Component Operation & Performance .. V–101
V.E.1 Los Alamos National Laboratory: Durability Improvements through Degradation Mechanism
 Studies .. V–101
V.E.2 Lawrence Berkeley National Laboratory: Fuel-Cell Fundamentals at Low and Subzero
 Temperatures .. V–108
V.E.3 National Renewable Energy Laboratory: Effect of System Contaminants on PEMFC
 Performance and Durability .. V–113
V.E.4 Hawaii Natural Energy Institute: The Effect of Airborne Contaminants on Fuel Cell
 Performance and Durability .. V–119
V.E.5 Ballard Power Systems: Open Source FCPEM-Performance and Durability Model:
 Consideration of Membrane Properties on Cathode Degradation ... V–125

V.F Testing and Technical Assessment .. V–130
V.F.1 National Renewable Energy Laboratory: Optimal Stationary Fuel Cell Integration
 and Control .. V–130
V.F.2 Argonne National Laboratory: Performance and Durability of Advanced Automotive Fuel
 Cell Stacks and Systems .. V–133
V.F.3 Strategic Analysis, Inc.: Fuel Cell Vehicle and Bus Cost Analysis V–141
V.F.4 Oak Ridge National Laboratory: Characterization of Fuel Cell Materials V–147
V.F.5 National Institute of Standards and Technology: Neutron Imaging Study of the Water
 Transport in Operating Fuel Cells ... V–152
V.F.6 Battelle: Stationary and Emerging Market Fuel Cell System Cost Analysis—Primary Power
 and Combined Heat and Power Applications .. V–158
V.F.7 Lawrence Berkeley National Laboratory: A Total Cost of Ownership Model for Design and
 Manufacturing Optimization of Fuel Cells in Stationary and Emerging Market Applications V–162
V.F.8 Redox Power Systems: Affordable, High Performance, Intermediate Temperature Solid
 Oxide Fuel Cells ... V–167
V.F.11 Giner, Inc.: Ionomer Dispersion Impact on Advanced Fuel Cell and Electrolyzer Performance
 and Durability ... V–179
V.F.12 Argonne National Laboratory: Novel Non-PGM Catalysts from Rationally Designed 3-D
 Precursors .. V–184
Table of Contents

V. Fuel Cells (Continued)
 V.F Testing and Technical Assessment (Continued)
 V.F.13 Savannah River National Laboratory: PGM Free Catalysts for PEMFC .. V–189
 V.F.14 Pacific Northwest National Laboratory: High Performance and Durable Low PGM Cathode Catalysts ... V–194
 V.F.15 Oak Ridge National Laboratory: Magnetic Annealing of Pt-Alloy Nanostructured Thin Film Catalysts for Enhanced Activity .. V–198
 V.F.16 Oak Ridge National Laboratory: High Conductivity Durable Anion Conducting Membranes ... V–203
 V.F.17 Los Alamos National Laboratory: Advanced Hydroxide Conducting Membranes ... V–205
 V.F.18 Sandia National Laboratories: DOE's High Acid Content Diels-Alder Poly(Phenylene)s for High Temperature and Low Humidity Applications .. V–211
 V.F.19 Los Alamos National Laboratory: Engineered Low-Pt Catalyst Layers ... V–218
 V.F.20 Brookhaven National Laboratory: Semi-Automated MEA Fabrication with Ultra-Low Total PGM Loadings ... V–223

VI. Manufacturing R&D ... VI–1
 VI.0 Manufacturing R&D Sub-Program Overview ... VI–3
 VI.1 National Renewable Energy Laboratory: Fuel Cell Membrane Electrode Assembly Manufacturing R&D ... VI–7

VII. Technology Validation .. VII–1
 VII.0 Technology Validation Sub-Program Overview .. VII–3
 VII.1 National Renewable Energy Laboratory: Hydrogen Component Validation .. VII–9
 VII.2 Lawrence Livermore National Laboratory: Performance and Durability Testing of Volumetrically Efficient Cryogenic Vessels and High Pressure Liquid Hydrogen Pump ... VII–13
 VII.3 National Renewable Energy Laboratory: FCTO INTEGRATE Stack Test Bed and Grid Interoperability .. VII–17
 VII.6 National Renewable Energy Laboratory: Material Handling Equipment Data Collection and Analysis .. VII–31
 VII.7 Sandia National Laboratories: Development of the Hydrogen Station Equipment Performance (HySTEP) Device ... VII–36
 VII.8 California Fuel Cell Partnership: Station Operational Status System (SOSS) 3.0 Upgrade ... VII–41
 VII.9 Proton OnSite: Validation of an Advanced High Pressure PEM Electrolyzer and Composite Hydrogen Storage, with Data Reporting, for SunHydro Stations .. VII–44
 VII.10 Gas Technology Institute: Performance Evaluation of Delivered Hydrogen Fueling Stations ... VII–50
 VII.11 National Renewable Energy Laboratory: Hydrogen Station Data Collection and Analysis ... VII–53
 VII.12 California State University Los Angeles: CSULA Hydrogen Refueling Facility Performance Evaluation and Optimization VII–58
 VII.14 Idaho National Laboratory: Dynamic Modeling and Validation of Electrolyzers in Real Time Grid Simulation ... VII–65

VIII. Safety, Codes & Standards .. VIII–1
 VIII.0 Safety, Codes & Standards Sub-Program Overview .. VIII–3
 VIII.1 Sandia National Laboratories: Hydrogen Behavior and Quantitative Risk Assessment ... VIII–7
 VIII.3 Sandia National Laboratories: R&D for Safety, Codes and Standards: Materials and Components Compatibility .. VIII–17
Table of Contents

VIII. Safety, Codes & Standards (Continued)
- **VIII.4** Los Alamos National Laboratory: Hydrogen Fuel Quality ... VIII–21
- **VIII.5** National Renewable Energy Laboratory: NREL Hydrogen Sensor Testing Laboratory VIII–26
- **VIII.6** Pacific Northwest National Laboratory: Hydrogen Safety Panel, Safety Knowledge Tools and First Responder Training Resources ... VIII–31
- **VIII.7** National Renewable Energy Laboratory: Fuel Cell Technologies National Codes and Standards Development and Outreach ... VIII–38
- **VIII.9** National Renewable Energy Laboratory: Hydrogen Contaminant Detector VIII–46
- **VIII.10** Sandia National Laboratories: Enabling Hydrogen Infrastructure Through Science-Based Codes and Standards .. VIII–49
- **VIII.11** Los Alamos National Laboratory: Hydrogen Safety, Codes and Standards: Sensors VIII–53
- **VIII.12** Lawrence Livermore National Laboratory: Hands-On Hydrogen Safety Training VIII–60

IX. Systems Analysis ... IX–1
- **IX.0** Systems Analysis Sub-Program Overview .. IX–3
- **IX.1** Argonne National Laboratory: Impact of Fuel Cell System Peak Efficiency on Fuel Consumption and Cost ... IX–13
- **IX.2** Oak Ridge National Laboratory: GPRA Analysis: Impact of Program Targets on Vehicle Penetration and Benefits ... IX–19
- **IX.4** Argonne National Laboratory: Performance and Cost Analysis for a 300 kW Tri-Generation Molten Carbonate Fuel Cell System .. IX–29
- **IX.5** Argonne National Laboratory: Employment Impacts of Infrastructure Development for Hydrogen and Fuel Cell Technologies .. IX–34
- **IX.6** Argonne National Laboratory: Life Cycle Analysis of Water Use for Hydrogen Production Pathways .. IX–37
- **IX.7** Sandia National Laboratories: Hydrogen Analysis with the Sandia ParaChoice Model IX–41
- **IX.8** The University of Tennessee: Status and Prospects of the N.A. Non-Automotive Fuel Cell Industry: 2014 Update .. IX–44
- **IX.9** University of California, Irvine: Tri-Generation Fuel Cell Technologies for Location-Specific Applications .. IX–48
- **IX.10** Argonne National Laboratory: Analysis of Incremental Fueling Pressure Cost IX–54
- **IX.12** National Renewable Energy Laboratory: Infrastructure Investment and Finance Scenario Analysis ... IX–61
- **IX.13** The University of Chicago: The Business Case for Hydrogen-Powered Passenger Cars: Competition and Solving the Infrastructure Puzzle .. IX–65
- **IX.14** Kalibrate: Retail Marketing Analysis: Hydrogen Refueling Stations IX–67

X. Market Transformation ... X–1
- **X.0** Market Transformation Sub-Program Overview ... X–3
- **X.1** Plug Power: Ground Support Equipment Demonstration .. X–7
- **X.2** Sandia National Laboratories: Maritime Fuel Cell Generator Project X–10
- **X.3** Center for Transportation and the Environment: Fuel Cell Hybrid Electric Delivery Van Project ... X–14
- **X.4** Hawaii Natural Energy Institute: Hydrogen Energy Systems as a Grid Management Tool X–18
- **X.5** US Hybrid Corporation: Demonstration and Deployment of a Fuel Cell-Electric Refuse Truck for Waste Transportation ... X–21

<table>
<thead>
<tr>
<th>Phase</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I Projects</td>
<td></td>
</tr>
<tr>
<td>XI.0</td>
<td>Small Business Innovation Research (SBIR) Fuel Cell Technologies Office New Projects Awarded in FY 2015</td>
</tr>
<tr>
<td>XI.1</td>
<td>US Hybrid Corporation: Fuel Cell-Battery Electric Hybrid for Utility or Municipal MD or HD Bucket Trucks (H2BT)</td>
</tr>
<tr>
<td>XI.2</td>
<td>Mainstream Engineering: Cross-polarized Near-UV Detector for In-line Quality Control of PEM Material</td>
</tr>
<tr>
<td>XI.3</td>
<td>Proton OnSite: Non-Platinum Group Metal OER/ORR Catalysts for Alkaline Membrane Fuel Cells and Electrolyzers</td>
</tr>
<tr>
<td>XI.4</td>
<td>PH Matter, LLC: Non-Precious Metal Bi-Functional Catalysts</td>
</tr>
<tr>
<td>XI.5</td>
<td>Southwest Sciences, Inc.: Diode Laser Sensor for Contaminants in Hydrogen Fuel</td>
</tr>
<tr>
<td>XI.6</td>
<td>Sustainable Innovations, LLC: Hydrogen Contamination Detection</td>
</tr>
<tr>
<td>Phase II Projects</td>
<td></td>
</tr>
<tr>
<td>XI.7</td>
<td>Giner Inc.: Ionomer Dispersion Impact on Advanced Fuel Cell and Electrolyzer Performance and Durability</td>
</tr>
<tr>
<td>XI.8</td>
<td>Tetramer Technologies, LLC: New High Performance Water Vapor Membranes to Improve Fuel Cell Balance of Plant Efficiency and Lower Costs</td>
</tr>
<tr>
<td>XI.9</td>
<td>GVD Corporation: Flexible Barrier Coatings for Harsh Environments</td>
</tr>
<tr>
<td>XI.10</td>
<td>Giner Inc.: High Performance Long Lifetime Catalyst for Proton Exchange Membrane Electrolysis</td>
</tr>
<tr>
<td>XI.11</td>
<td>Tetramer Technologies, LLC: New Approaches to Improved PEM Electrolyzer Ion Exchange Membranes</td>
</tr>
</tbody>
</table>

XII. Acronyms, Abbreviations, and Definitions

XIII. Primary Contacts Index

XIV. Hydrogen and Fuel Cells Program Contacts

XV. Project Listings by State

XVI. Project Listings by Organization