Development of a Low-Cost, Durable Membrane and MEA for Stationary and Mobile Fuel Cell Applications

Scott Gaboury
Atofina Chemicals, Inc.
May, 2004

This presentation does not contain any proprietary or confidential information.
Evaluation of safety practices is a mandatory part of developing our Standard Operating Procedure (SOP) documentation for any new procedure. Hydrogen and platinum handling have been particular points of discussion to help develop best practices.

Findings of scheduled laboratory inspections, observations, and personal protective equipment (PPE) usage are reviewed regularly.

Internal safety audits are a key part of safety our efforts, and new efforts in external audit programs offers an added level of review through Modern Safety Management being implemented at Atofina and Health and Safety Improvement Plans being implemented at Johnson Matthey.

Johnson Matthey and Atofina also participate in the Responsible Care Program to voluntarily raise safety standards above minimum requirements.
Team

- Atofina Chemicals, Inc.
 - Georgia Tech

- Johnson Matthey Fuel Cells, Inc.

- UTC Fuel Cells
 - University of Hawaii
Project Overview/Objectives

• To develop low-cost, high-durability membranes
 • Optimize chemistry & process
 • Validate scale up

• To develop MEAs based on these membranes
 • Optimize MEA for new membrane
 • Validate MEA performance

• To validate the MEA performance in single cells and in stacks
Budget*

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atofina & Partners</td>
<td>$2,240,564</td>
</tr>
<tr>
<td>DOE</td>
<td>$5,771,351</td>
</tr>
<tr>
<td>Total</td>
<td>$8,011,915</td>
</tr>
</tbody>
</table>

*FY-04, 05, 06
Technical Barriers and Targets

- DOE Technical Barriers for Fuel Cell Components
 - O. Stack Material and Manufacturing Cost
 - P. Durability

- DOE Technical Target for Fuel Cell Stack System for 2010
 - Cost $35/kW
 - Durability 5000 hours
Kynar® PVDF (Polyvinylidene fluoride) is very stable in highly corrosive environments, for example:
- Acidic media (HF, HCl, HBr…)
- Electrochemically stable (Lithium batteries…)

The membrane consists of a blend of Kynar PVDF and a proprietary polyelectrolyte.

This approach is highly tunable:
- The type of Kynar used
- The composition of the polyelectrolyte
- The process to blend them

As the chemistry of the membrane is very different from that of existing materials, the MEA will have to be redesigned accordingly.
Program Timeline

<table>
<thead>
<tr>
<th>Task Name</th>
<th>1Q04</th>
<th>2Q04</th>
<th>3Q04</th>
<th>4Q04</th>
<th>1Q05</th>
<th>2Q05</th>
<th>3Q05</th>
<th>4Q05</th>
<th>1Q06</th>
<th>2Q06</th>
<th>3Q06</th>
<th>4Q06</th>
<th>1Q07</th>
<th>2Q07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1. Membrane Development</td>
<td></td>
</tr>
<tr>
<td>1.1 Membrane meets req. for MEA optimization</td>
<td></td>
</tr>
<tr>
<td>1.2 Membrane selected</td>
<td></td>
</tr>
<tr>
<td>1.3 Membrane pilot line operation</td>
<td></td>
</tr>
<tr>
<td>Task 2. MEA Development</td>
<td></td>
</tr>
<tr>
<td>2.1 Binder System Selected</td>
<td></td>
</tr>
<tr>
<td>2.2 50 cm² MEA meets requirements</td>
<td></td>
</tr>
<tr>
<td>2.3 400 cm² MEA meets requirements</td>
<td></td>
</tr>
<tr>
<td>2.4 Select final MEA</td>
<td></td>
</tr>
<tr>
<td>2.5 MEA delivery to UTCFC</td>
<td></td>
</tr>
<tr>
<td>2.6 Pilot line operational</td>
<td></td>
</tr>
<tr>
<td>Task 3. Cell & Stack Verification</td>
<td></td>
</tr>
<tr>
<td>3.1 400 cm² single cell meets requirements</td>
<td></td>
</tr>
<tr>
<td>3.2 20-cell 400 cm² stack meets requirements</td>
<td></td>
</tr>
<tr>
<td>3.3 20-cell 400 cm² stack completes 4000 hrs.</td>
<td></td>
</tr>
</tbody>
</table>
Georgia Tech: Technical Progress

High-Throughput Screening:

• Designed 2 novel rapid screens
 - Water sorption – preliminary data stage
 - Conductivity – instrument construction stage

• Existing screens
 - Mechanical properties
 - Spectroscopy (FTIR, UV-Vis)

• Existing synthesis – gradient libraries
Georgia Tech: High-Throughput Synthesis & Mechanics

Gradient Libraries

Mechanical Screening

Velocity Sensor

Isolation mounting

Polymer library film

Sample Mount

Guide Rail

Contact Tip (steel)

500 μm

Force Sensor

T

φ_{curative}
Rapid point-to-point
Jandel Scientific

4-point probe
600 µm spacing

Screw allows pressure to be user adjusted

PXI-Based AC Signal Generator and Measurement

A ATOFINA
Membrane Development:

- Conductivity ~130mS/cm (70°C in water)
- Thin films possible: excellent areal resistance
- Good mechanical properties (creep, tear strength…)
- Water swelling behavior similar to PFSA
- MEA prepared using commercial E-TEK® electrodes
- Good polarization curves (H₂, O₂ & Air, 100% RH)
- 2000+ hour endurance test completed

- Lower conductivity at low relative humidities than PFSA
Atofina: Polarization Curves

60°C, H₂/O₂ (1.4/2.0), 0 psig

Cell Potential / V vs. Current Density / A cm⁻² for different materials:
- M27_1
- M31_2
- M31_3
- Nafion 112®
Atofina: Long Term Stability

60°C, H₂/O₂ (1.4/2.0), 0 psig

- M27_1: Decay Rate - 147uV/hr
- M31_2: Decay Rate - 75uV/hr
- M31_3: Decay Rate - 45uV/hr

Time / Hours

Cell Potential / V
Johnson Matthey: Technical Progress

MEA Optimization

- JMFC-US test stand commissioned
- Validation runs confirm consistent results with JMFC-UK
- Cell temperature evaluation started (80°C & 60°C)
 - Similar performance at both temperatures
 - Less flooding at higher current density with lower temp.
 - 4x longer conditioning at lower temp.
- First MEA variant made & tested with Atofina membrane
- High OCV and H₂ permeation resistance observed
 - Lower electrochemical performance compared to standard MEA fabrication conditions
- Significant drop in electrical resistance noted for most Atofina membrane based MEAs
Johnson Matthey: Temperature & Fabrication Modifications

Screener cell at 80°C/60°C, H₂/Air, O₂ at 100/100 kPa gauge, 1.5/2.0, 10.0 Stoich., 100%Rha/100%Rhc.
Future Work

- Membrane development
 - Improve resistance to shorting
 - Kynar® chemistry
 - Polyelectrolyte chemistry
 - Improve water management
 - Continue long term testing
 - Process scale up

- MEA optimization for Atofina membranes
 - Evaluation of cell conditions (e.g. temperature, RH, pressure)
 - Optimization of MEA fabrication to gain full membrane performance (e.g. fabrication parameters, GDL, catalyst)