Fuel Processors for PEM Fuel Cells

University of Michigan
College of Engineering
May 25, 2004

"This presentation does not contain any proprietary or confidential information."
Project Objectives

• Develop high performance, low-cost materials
 - High capacity sulfur adsorbents for liquid fuels
 - High activity and durable Autothermal Reforming (ATR), Water Gas Shift (WGS) and Preferential Oxidation (PrOx) catalysts
• Design and demonstrate microreactors employing high performance catalysts
• Design and demonstrate microvaporizer/combustor
• Design and demonstrate thermally integrated microsystem-based fuel processors
• Evaluate system cost

"This presentation does not contain any proprietary or confidential information."
Total Budget (as of March, 2004)

Year 4
$1,418,201

Year 1
$975,000

Year 2
$975,000

Year 3
$1,950,000

<table>
<thead>
<tr>
<th></th>
<th>DoE</th>
<th>Cost-Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received</td>
<td>1,250k</td>
<td>517k</td>
</tr>
<tr>
<td>Due</td>
<td>1,750k</td>
<td>383k</td>
</tr>
<tr>
<td></td>
<td>41%</td>
<td>22%</td>
</tr>
</tbody>
</table>

"This presentation does not contain any proprietary or confidential information."
Fuel Processor (Fuel Cell) Technical Barriers

- Fuel Processor Startup/Transient Operation
 - Improved catalysts, sorbents and reactors
 - Thermal integration
 - Decreased unit operations

- Durability
 - Improved impurity tolerance
 - Improved resistance to coking and sintering

- Emissions and Environmental Issues

- Hydrogen Purification/CO Cleanup
 - Improved catalysts, sorbents and reactors

- Fuel Processor System Integration and Efficiency

- Cost
 - Improved catalysts, sorbents and reactors
 - Integration and decreased unit operations

"This presentation does not contain any proprietary or confidential information."
Fuel Processor (Fuel Cell) Technical Targets

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Units</th>
<th>Current Status (2003)</th>
<th>Target for Year:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency</td>
<td>%</td>
<td>78</td>
<td>78</td>
<td>80</td>
</tr>
<tr>
<td>Power density</td>
<td>W/L</td>
<td>700</td>
<td>700</td>
<td>800</td>
</tr>
<tr>
<td>Specific power</td>
<td>W/kg</td>
<td>600</td>
<td>700</td>
<td>800</td>
</tr>
<tr>
<td>Cost</td>
<td>$/kWe</td>
<td>65</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Cold startup time to max power</td>
<td>min</td>
<td>TBD</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>@ -20 °C ambient temperature</td>
<td>min</td>
<td><10</td>
<td><1</td>
<td><0.5</td>
</tr>
<tr>
<td>@ +20 °C ambient temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transient response (10% to 90% power)</td>
<td>sec</td>
<td>15</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Emissions</td>
<td></td>
<td><Tier 2 Bin 5</td>
<td><Tier 2 Bin 5</td>
<td><Tier 2 Bin 5</td>
</tr>
<tr>
<td>Durability</td>
<td>hours</td>
<td>2000</td>
<td>4000</td>
<td>5000</td>
</tr>
<tr>
<td>Survivability</td>
<td>°C</td>
<td>TBD</td>
<td>-30</td>
<td>-40</td>
</tr>
<tr>
<td>CO content in product stream</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Steady state</td>
<td>ppm</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Transient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂S content in product stream</td>
<td>ppb</td>
<td><200</td>
<td><50</td>
<td><10</td>
</tr>
<tr>
<td>NH₃ content in product stream</td>
<td>ppm</td>
<td><10</td>
<td><0.5</td>
<td><0.1</td>
</tr>
</tbody>
</table>

"This presentation does not contain any proprietary or confidential information."
High Performance Materials + High Degree of Integration = Microsystems

Project Director: Levi Thompson (ltt@umich.edu)
Co-PIs: Gulari, Savage, Schwank & Yang (ChE);
Assanis, Im, Ni & Wooldridge (ME);
Dahm & Powell (Aero)
Subcontractors: Ricardo, Inc. (MI); Osram Sylvania;
IMM (Germany); MesoFuel (NM)

"This presentation does not contain any proprietary or confidential information."
Project Safety

• Preliminary Identification of Safety Vulnerabilities (e.g. FMEA, HAZOP)
• System Safety Assessment
• Risk Mitigation Plan
• Safety Performance Assessment
• Communications Plan
Project Timeline

Phase I: Components
- Design and Modeling
 - Desulfurizer Demonstration
 - Microreactor Demonstrations
 - Microcombustor/microvaporizer Demonstration
 - Microchannel System Development

Phase II: 1 kW Processor
- System Design and Modeling
 - System Fabrication

Phase III: ≤10 kW Processor
- System Evaluation

"This presentation does not contain any proprietary or confidential information."
Project Timeline

Phase I: Components

11/01-10-02 11/-2-10/-3 11/03-10/04 11/04-10/05

Phase II: 1 kW Processor

Phase III: ≤10 kW Processor

"This presentation does not contain any proprietary or confidential information."
π-Complexation Mechanism:

- Cu ions occupy faujasite 6-ring windows sites. Thiophene approaches site.
- σ-donation of thiophene π-electrons to the 4s orbital of Cu(I) or Ni(II)
- d-π* backdonation of electrons from 3d orbitals of Cu(I) or Ni(II) to π* orbitals of thiophene

"This presentation does not contain any proprietary or confidential information."
Sulfur Adsorber Prototype

- Three Sorbent Layers
 - Activated Carbon (12.4 wt%)
 - Activated Alumina (23 wt%)
 - Ni(II)-Y (64.6 wt%)
- Gasoline Rate: 50 mL/hr
- Equivalent H₂ Output: 2.8 moles/hr (100 W)
- Effluent Concentration: ~ 0.3 ppmw sulfur
- Operation Cycle: 9-10 hrs

Yang et al., U.S. and foreign patents applied.

"This presentation does not contain any proprietary or confidential information."
Microreactors

- Materials of Construction
 - Silicon Microfabrication
 - Micromachined Metals
 - Low Temperature Co-Fired Ceramics (LTCC)

- Metal Microreactors
 - 1st Generation (GEN1) Micro-reactor
 - Design and Fabrication
 - 2nd Generation (GEN2) Micro-reactor
 - Design Overview and Achievements

- Semi-solid Forming (SSF) Process

"This presentation does not contain any proprietary or confidential information."
GEN2 Prototype Design

• Flexible design
• Assembled reactor module is 77 x 64 x 54 mm (25 stacks)

Fabricated Parts

Assembled module

Heater
Gasket retainer
Foam
Gasket
Separation wall

Core Layers

"This presentation does not contain any proprietary or confidential information."
Breadboard System

"This presentation does not contain any proprietary or confidential information."
ATR Prototype Results
(100 \text{ We})

Experimental Conditions: \(\text{H}_2\text{O}/\text{C} = 2.0, \text{O}/\text{C} = 1.0 \)
Reactor Skin Temperature: 590 °C; Reactor Exit Temperature: 385 °C
1.5 SLPM air, 0.6 mL/min Iso-octane, 1.1 mL/min H\text{2}O

"This presentation does not contain any proprietary or confidential information."
Minimal Coke Deposition

"This presentation does not contain any proprietary or confidential information."
WGS Prototype Results

- Temperature: 240°C
- Flow rate: 40 ccm (1 Wₑ)
- GHSV: 53,333 h⁻¹
- Feed composition

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>10%</td>
</tr>
<tr>
<td>H₂O</td>
<td>31%</td>
</tr>
<tr>
<td>CO₂</td>
<td>6%</td>
</tr>
<tr>
<td>H₂</td>
<td>39%</td>
</tr>
<tr>
<td>N₂</td>
<td>15%</td>
</tr>
</tbody>
</table>

Conversion (%) vs. Time (hr):

- Packed Bed (120 mg)
- Single Foam (300 mg)

"This presentation does not contain any proprietary or confidential information."
WGS Prototype Results (100 We)

3.75 l/min

Conversion (%)

Time (min)

Dual: 340 & 290 °C
Single: 330-390 °C

CO = 6.1%

20 Channels

340 °C

CO ~ 1.1%

15 Channels

290 °C

CO < 0.6%

"This presentation does not contain any proprietary or confidential information."
PrOx Prototype Results

- 4 % Pt-Al₂O₃ sol-slurry hybrid washcoat
- WHSV = 50 lit hr⁻¹ g-cat⁻¹
- Increased catalyst loading of ~250 mg/foam
- Inlet stream compositions (simulated WGS exhaust):
 - CO : 0.79 – 0.81 %
 - O₂ : 0.81 – 1.19 %
 - CO₂ : 14.91 – 15.28 %
 - H₂ : 30.58 – 31.32 %
 - H₂O : 15.54 %
 - N₂ : 36.23 – 36.99 %
PrOx Prototype Results

Performance of assembled PrOx module

Conversion/Selectivity (%)

Temperature (°C)

02: CO ratio = 1.0

220

02: CO ratio = 1.5

200

"This presentation does not contain any proprietary or confidential information."
Catalytic Tailgas Combustor Prototype

Burner Characteristics:

- 100 W nominal capacity mesoscale burner
- 80 ppi Pt-coated FeCrAlloy metal foam
- 8.0 L/min tailgas low-H₂ surrogate flow rate

"This presentation does not contain any proprietary or confidential information."
Catalytic Tailgas Burner and Heat Exchanger Prototype

- Performance tests conducted for 1.5% - 8% H₂ concentrations
- Current test results show single-sided efficiencies of 35-45%
- Double-sided efficiencies anticipated in 65-80% range

"This presentation does not contain any proprietary or confidential information."
GEN2 100 W_e Prototype Design

Table

<table>
<thead>
<tr>
<th></th>
<th>Vap/Com</th>
<th>ATR</th>
<th>WGS</th>
<th>PrOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>450</td>
<td>600</td>
<td>340</td>
<td>290</td>
</tr>
<tr>
<td>Modules</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Catalyst Type</td>
<td>Ni/CeZrO<sub>2</sub></td>
<td>Au/CeO<sub>2</sub></td>
<td>Au/CeO<sub>2</sub></td>
<td>Pt/Al<sub>2</sub>O<sub>3</sub></td>
</tr>
<tr>
<td>Catalyst Weight (g)</td>
<td>1.5</td>
<td>6</td>
<td>4.5</td>
<td>2.4</td>
</tr>
<tr>
<td>No. of Foam cores</td>
<td>10</td>
<td>20</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Foam Volume (cc)</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Power Density (W/L)*</td>
<td>Based on Foam</td>
<td>5,500</td>
<td>25,000</td>
<td>7,142</td>
</tr>
<tr>
<td></td>
<td>Target</td>
<td>5,882</td>
<td>10,417</td>
<td>2,525</td>
</tr>
</tbody>
</table>

*This presentation does not contain any proprietary or confidential information."
Interactions and Collaborations

- **Osram Sylvania (some IP transfer):** Joel Christian - scale up of catalysts
- **Ricardo:** Marc Wiseman - system optimization and cost analysis
- **Mesofuel:** Doyle Miller - heat exchanger design and fabrication
- **IMM:** Volker Hessel - reactor design optimization

"This presentation does not contain any proprietary or confidential information."
Responses to Previous Year Reviewers’ Comments

- Capacity of Cu(I) zeolite too low
- Coking of Ni-based ATR catalysts
- Verify performance of WGS catalysts
- Bottoms up approach
- Slow progress in developing microreactors
- Minimal involvement by companies
- Microprocessor work appears to be similar to PNNL
- Recommendations: Sulfur-tolerant ATR and hot gas sulfur sorbent

"This presentation does not contain any proprietary or confidential information."
Future Work

• Remainder of FY03
 - Increase module power densities
 • Increase catalyst loading and utilization
 • Decrease parasitic weight (reactor and foam)
 - Assemble 100 W breadboard fuel processor
 - Evaluate cost and final size
 - Estimate start-up time

• FY04 (through end of 2004)
 - Demonstrate integrated module
 - Assemble 1 kW breadboard fuel processor

"This presentation does not contain any proprietary or confidential information."
Stack Level Integration

Flow Path

<table>
<thead>
<tr>
<th>Flow Path</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATR</td>
<td>650</td>
</tr>
<tr>
<td>By-Pass</td>
<td>400</td>
</tr>
<tr>
<td>HtEx</td>
<td>650</td>
</tr>
<tr>
<td>200</td>
<td>HtEx</td>
</tr>
<tr>
<td>HTS</td>
<td>450</td>
</tr>
<tr>
<td>HtEx</td>
<td>100</td>
</tr>
<tr>
<td>LTS</td>
<td>300</td>
</tr>
<tr>
<td>100</td>
<td>HtEx</td>
</tr>
<tr>
<td>150</td>
<td>PrOx</td>
</tr>
<tr>
<td>HtEx</td>
<td>RT</td>
</tr>
</tbody>
</table>

Ceramic Insulating Layer

"This presentation does not contain any proprietary or confidential information."
Thank You

High Performance Materials + High Degree of Integration + Microsystems

Project Director: Levi Thompson (ltt@umich.edu)
Co-PIs: Gulari, Savage, Schwank & Yang (ChE);
 Assanis, Im, Ni & Wooldridge (ME);
 Dahm & Powell (Aero)
Subcontractors: Ricardo, Inc. (MI); Osram Sylvania;
 IMM (Germany); MesoFuel (NM)

"This presentation does not contain any proprietary or confidential information."