DCEC Company Overview

• Headquarters: Delhi, New York
• Geographic Area Served:
 • South Eastern portion of New York State
 • Greater Catskill Mountains
• 800 miles of distribution lines
• 5,000 member/customers
• 35 Employees
• “Full Requirements” status with New York Power Authority
• System Load: ~15MW peak
• Member of National Rural Electric Cooperative Association (NRECA)

Vital Utility supplier to the Greater Catskill Mountain Area
• Validate objectives of propane fueled hydrogen fuel cells for edge-of-grid residences via a field trial demonstration
 – measure and report technical performance
 – provide raw cost data and economic viability analysis
 – document maintenance and operations concept enhancements specific to residential fuel cells
 – share safety related vulnerabilities analysis and lessons learned
 – promote education of state and local consumers

Project Objectives

Technical and economic viability of fuel cell alternative to new line construction.
Budget

- Total project funding: $588,646
 - DOE share: $294,323
 - DCEC share: $294,323
- Estimated FY03 Expenditures: $114,000
 - estimate includes project planning, contract administration/reporting, preliminary engineering, and initial educational efforts
 - estimate assumes no fuel cell purchasing expenditures during FY03.
• DOE Technical Barriers for Fuel Cell Validation
 – DOE designation “I”
 – Hydrogen and electricity co-production
 • Cost and durability not statistically validated
 • Permitting, codes, and standards not established for fuel cells in or around buildings
 • Lack of operational and maintenance experience

Field experience required to overcome barriers.
Technical Performance Objectives

- Efficiency with and without thermal recovery
 - Electrical energy efficiency at rated power
 - Combined heat and power (CHP) efficiency
- Cost
- Transient response
- Cold start time
- Survivability
- Durability
- Power quality
- Noise
- Emissions

Controlled experiments and real time measurement and reporting during operating period.
Sensitivity Analysis Parameters

- Temperature
- Humidity
- Propane odorant variations (constituents, odorants, heating value, etc.)
- In-service time

Real-world range of operating conditions and fuel compositions.
Economic Viability

- Complete economic model for “typical” rural residential customer
- Extending portions of economic model to other rural electric cooperative load types
 - Peak demand and load profiles
 - Non-residential

Enable comparison fuel cells to alternative distribute generation technologies.
Approach

- Install and operate
 - evaluation of alternative fuel cell technologies for rural residential applications
 - propane fueled residential fuel cell
 - thermal recovery for water and space heating
- Rigorous approach to parametric control and monitoring throughout 12 - 18 month operating cycle
- Analyze 12 to 18 months of logged data
 - technical performance, economic viability, safety, operations and maintenance concepts

All activities managed utilizing Six Sigma tollgate approach.
Project Safety Vulnerabilities

- Customer safety regarding operation of switching mechanisms in support of independent (off-grid) operations of fuel cell
- Customer and cooperative personnel safety regarding siting, storage, and access to batteries
- Compliance with and evaluation of fuel cell vendor’s safety recommendations
- Environmental vulnerabilities related to fuel cell, batteries and propane storage

Each safety vulnerability reviewed at tollgates 3, 4, and 5 of Six Sigma process.
Project Safety Documentation

• In-house safety review process focused on fuel cell vendor safety documentation, propane vendor safety documentation, and the cooperative’s governing safety manual.

• Review comments and updated documents (where appropriate) to be provided to NRECA’s Cooperative Research Network and DOE.
• Phase 1 - Project Planning and Stakeholder Definition
• Phase 2 - Preliminary Engineering
 1 Contract finalization
 2 Site selection (Site Selection Report)
 3 Fuel Cell Vendor Contracting
 4 Interconnect engineering

ACF = After Contract Finalization
• Phase 3 - Detailed Engineering, Installation, and Startup
 5 Site work (Installation Report)
 6 Operational verification and startup (Commissioning Letter Report)
• Phase 4 - Operating Period
 7 System operation and data collection (Project Tollgate Reports)
• Phase 5 - Analysis and Closeout
 8 Data analysis and final reports (Final Report on Technical Performance Measures, Economic Viability, and Operations and Maintenance Procedures)
 9 Decommissioning activities

ACF = After Contract Finalization
Interactions and Collaborations

• National Rural Electric Cooperative Association’s Cooperative Research Network –
 – integral component of national research program
 – providing research methodologies and consolidating results with other cooperative demonstrations

• New York Power Authority
 – providing engineering, permitting, and interconnection support

• Fuel Cell Vendor
 – providing fuel cell plant, technical resources, and data acquisition analysis and reporting

• 1st Rochdale Electric Cooperative
 – potential involvement with NYSERDA (New York State Energy Research and Development Authority) in urban residential application
 – joint data analysis and peer review