Low-Friction Coatings and Materials for Fuel Cell Air Compressors

O. O. Ajayi, A. Erdemir, and G. R. Fenske

2004 DOE HFCIT Program Review Presentation

April 23, 2004

This presentation does not contain any proprietary or confidential information.

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago
Objectives

Technology Issue and Relevance:
Fuel cell stacks require a compact, lightweight, highly efficient, and low-cost compressor/expander. No off-the-shelf compressor technology that can meet DOE target exits. Several contractors are developing compressor/expander systems for DOE. Efficiency, reliability, and durability of such systems are dependent on effective lubrication of critical components such as bearings and seals. Such components cannot be oil lubricated - oil will contaminate fuel cell stacks.

Objectives: Develop and evaluate low-friction and wear-resistant coatings and/or materials for critical components of air compressor/expanders being developed for fuel cells by DOE contractors.

Budget & Effort: 200K FY04; 2 staff + visiting scientist & student
Technical Barriers and Targets

- Transportation Systems Barriers
 - A. Compressors/Expanders

- DOE Technical Targets for 50-kW System Compressor for 2010
 - Cost - $6/kW
 - Efficiency at Full Flow - 80%
 - Volume - 8-11 L
 - Weight - 8-11 Kg
 - Turndown Ratio – 10-15
 - Noise dB(A) at 2 meters – 70 dB(A)
Approach

• Work with various DOE contractors to
 – Identify tribologically challenging critical compressor components
 – Apply and evaluate Argonne’s near-frictionless carbon coatings to the components when appropriate
 – Develop and evaluate polymer composite materials with boric acid solid lubricant.
 – Identify and evaluate other candidate materials for various specific compressor components
 – Transfer developed technology to DOE contractors

• Develop a tribology-based material selection methodology applicable to all the DOE compressor contractor’s operating conditions and requirements
Project Safety

• All the tasks in the project are on the laboratory bench top scale.

• It is the policy of Argonne National Laboratory that its activities be conducted in such a manner that worker safety, public safety, and protection of the environment are given highest priority.

• An environmental evaluation has been completed in accordance with the DOE-approved ANL-E process for implementation of the National Environmental Policy Act.
Project Timeline

FY 2000
- 50% Friction Reduction in Variex variable displacement low pressure low friction
- Developed Nylon-12 boron oxide polymer composite.

FY 2001
- Designed and constructed high speed turbo testing for mechanology TIVM vane
- Evaluated some materials and coatings for TIVM vane.

FY 2002
- Developed NFC coating for Meruit turbocompressor journal and thrust air bearings
- Meruit incorporated NFC technology into their air bearing design - tech. transfer.

FY 2003
- Continued evaluation of TIVM vane material.
- Material selection methodology-T map.
- Material evaluation and coating development for mesoscopic devices.

FY 2004
- Tribological evaluation of vane materials and coatings for TIVM
- Materials and coatings evaluation for Variex and DynEco
- Materials selection methodology
Mechanology TIVM Vane Materials Evaluation

- To meet DOE efficiency target, Mechanologys’ TIVM compressor vanes require sliding friction coefficient < 0.15 under high sliding contact.
 - Low-cost material – to meet cost target
 - Stable friction behavior – low noise
 - Wear resistant – for durability target

- Evaluated two classes of engineering polymers – PEEK and Ultem, and NFC coating
 - Three types of ball material – 440C stainless steel, Aluminum alloy (2017) and NFC coated steel ball.

- Test conducted under room and 100% relative humidity

High-speed three-ball-on disc test rig
Disc Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEK FC30</td>
<td>Polyetheretherketone with 30% carbon fiber/powder</td>
</tr>
<tr>
<td>PEEK CPK 53</td>
<td>Weaved Carbon Fiber Reinforced PEEK</td>
</tr>
<tr>
<td>Ultem 1000</td>
<td>Polyetherimide base resin</td>
</tr>
<tr>
<td>Ultem 4000</td>
<td>Polyetherimide with glass reinforced and lubricant</td>
</tr>
<tr>
<td>Ultem 4001</td>
<td>Polyetherimide with lubricant additive</td>
</tr>
<tr>
<td>NFC Coated Steel</td>
<td>ANL’s Amorphous Carbon Coating</td>
</tr>
<tr>
<td>Nylatron</td>
<td>Nylon & Molybdenum Disulphide (MoS2)</td>
</tr>
<tr>
<td>Ertalyte TX</td>
<td>Polyethylene Terephthalate (PET-P) w/solid lubricant</td>
</tr>
<tr>
<td>Fluorosint 500</td>
<td>Polytetrafluoroethylene (PTFE)</td>
</tr>
</tbody>
</table>
Friction Behavior

- Some candidate material and coatings will meet the < 0.15 friction coefficient requirement under both dry and humid environments.
Wear Behavior

- Wear rate in some of the candidate materials and coating are acceptable in both dry and humid environments

Specific Wear Rate for Disc Wear in Ambient RH

<table>
<thead>
<tr>
<th>Disc Material</th>
<th>NFC2</th>
<th>Neat PEEK</th>
<th>450</th>
<th>FC30</th>
<th>CPK 53</th>
<th>Ultem 1000</th>
<th>Ultem 4000</th>
<th>Ultem 4001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Wear Rate (mm³/(N*m)) NFC Ball</td>
<td>1.27E-06</td>
<td>1.68E-06</td>
<td>6.08E-06</td>
<td>9.67E-07</td>
<td>0.00E+00</td>
<td>5.00E-05</td>
<td>1.00E-04</td>
<td>1.50E-04</td>
</tr>
</tbody>
</table>

Specific Wear Rate for Disc Wear in 100% RH

<table>
<thead>
<tr>
<th>Disc Material</th>
<th>NFC2</th>
<th>Neat PEEK</th>
<th>450</th>
<th>FC30</th>
<th>CPK 53</th>
<th>Ultem 1000</th>
<th>Ultem 4000</th>
<th>Ultem 4001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Wear Rate (mm³/(N*m)) NFC Ball</td>
<td>1.37E+03</td>
<td>2.43E-06</td>
<td>0.00E+00</td>
<td>5.00E-05</td>
<td>1.00E-04</td>
<td>1.50E-04</td>
<td>2.00E-04</td>
<td>2.50E-04</td>
</tr>
</tbody>
</table>

Specific Wear Rate for Ball Wear in Ambient RH

<table>
<thead>
<tr>
<th>Disc Material</th>
<th>NFC2</th>
<th>Neat PEEK</th>
<th>450</th>
<th>FC30</th>
<th>CPK 53</th>
<th>Ultem 1000</th>
<th>Ultem 4000</th>
<th>Ultem 4001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Wear Rate (mm³/(N*m)) NFC Ball</td>
<td>9.87E+00</td>
<td>1.39E+01</td>
<td>1.17E+00</td>
<td>2.61E-09</td>
<td>6.97E-06</td>
<td>0.00E+00</td>
<td>1.00E-07</td>
<td>2.00E-07</td>
</tr>
</tbody>
</table>

Specific Wear Rate for Ball Wear in 100% RH

<table>
<thead>
<tr>
<th>Disc Material</th>
<th>NFC2</th>
<th>Neat PEEK</th>
<th>450</th>
<th>FC30</th>
<th>CPK 53</th>
<th>Ultem 1000</th>
<th>Ultem 4000</th>
<th>Ultem 4001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Wear Rate (mm³/(N*m)) NFC Ball</td>
<td>9.87E+00</td>
<td>1.39E+01</td>
<td>1.17E+00</td>
<td>2.61E-09</td>
<td>6.97E-06</td>
<td>0.00E+00</td>
<td>1.00E-07</td>
<td>2.00E-07</td>
</tr>
</tbody>
</table>
Friction Heat Calculations

- As expected, significant differences in frictional heating characteristics of steel-on-steel contact and steel-on-polymer contact pairs
 - Effect of differences in thermal conductivity

![T-map for Steel-on-steel contact](image1)

![T-map for Steel-on-Ultem 1000 polymer contact](image2)
Interactions and Collaborations

- Meruit Inc. and Texas AM: Coated several components for turbocompressor testing at Texas AM (Prof. San Andres).

- Mesoscopic Devices: Coated components for blowers for small fuel cells for testing.

- Mechanology LLC: Evaluation and characterization of tribological behavior of candidate materials for TIVM.

- Variex Corp: Material tribological evaluation for vane compressor.

- DynEco: Material/coating evaluation for vane compressor

Responses to Previous Year Reviewers’ comments

• Work on real devices
 - Components were coated for real turbocompressor device for testing by Meruit Inc.
 - Prototype components were coated for Mesoscopic Devices Inc. for real device testing

• Focus on specific friction problems for compressor/blower
 - Working with Mechanology LLC to address specific friction and wear needs in TIVM
Future Work

• Continue work with DOE compressor developers to address critical tribological and material issues
 - Mechanology TIVM
 - Comprehensive tribological performance characterization of candidate materials and coating
 - Coat prototype components for device testing by mechanology
 - Variex Vane compressors
 - Evaluate materials and coatings under prototypical operating conditions.
 - DynEco Vane compressors
 - Evaluate tribological and corrosion properties under …….

• Continue development of compressor/expander material selection methodology.

• Expand current effort to include compressor/expander units for direct hydrogen systems