Autothermal Cyclic Reforming and H_2 Refueling System

Ravi Kumar, Court Moorefield, Parag Kulkarni, Boris Eiteneer, John Reinker, and Vladimir Zamansky
GE Global Research
Mike Manning
Praxair

DOE Project Review
Philadelphia, PA
May 2004

This presentation does not include any proprietary or confidential information
Outline

• Objectives
• Project Timeline & Budget
• DOE Targets
• Accomplishments over last year
• Safety Status
• Project Plan for Next Year
• Summary
Objectives

• Overall
 > Design a reformer based refueling system that can meet the DOE cost (<$2.50/kg) target
 > Fabricate and operate an integrated 60 kg of H₂/day reforming and refueling system

• Last Year
 > Design, fabricate and operate reformer and pressure swing adsorber pilot-scale sub-systems
 > Design the prototype reformer and pressure swing adsorber
 > Design the compression, storage and dispensing system and collect data on sub-systems
Project Timeline – Major Milestones

- **Phase I – Design and Analysis**
 1. Completed conceptual design
 2. Completed economic analysis
- **Phase II – Subsystem Development**
 3. Operated pilot-scale reformer and PSA
 4. Completed prototype reformer and PSA design
 5. Fabrication and shakedown of prototype reformer and PSA
- **Phase III – Integrated System Operation**
 6. Integration of ACR with PSA
 7. Complete bench-scale catalyst durability testing
 8. Integration of H₂ generator with H₂ compressor and dispenser
 9. Operation of ACR based hydrogen refueling system
Budget

- Total: $4.8 Million
- Industry: $2.1 Million
- DOE: $2.7 Million
- FY04 Funding: $0.6 Million
Technical Barriers and Targets

- Distributed H₂ Production from Natural Gas Barriers
 - A. Fuel Processor Capital Costs
 - B. Operation & Maintenance Issues
 - D. Carbon Dioxide Emissions
 - E. Control & Safety
 - Z. Catalysts
 - AB. H₂ Separation & Purification

- Targets

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2005</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost ($/kg)</td>
<td>5.0</td>
<td>3.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Efficiency (LHV)</td>
<td>62</td>
<td>68</td>
<td>75</td>
</tr>
</tbody>
</table>
Prototype Hydrogen Generating & Dispensing System

Autothermal Cyclic Reforming & H₂ Refueling
Exergy of Reformers for H₂ Generation

SMR/ACR

ATR

Exergy Destruction in Vent + Misc.

Exergy Destruction in Reformer + HX + Shift

H₂ Production Exergy

SMR – Steam Methane Reforming
ACR – Autothermal Cyclic Reforming
ATR – Conventional Autothermal Reforming
Reformers Choice Depends on Application

<table>
<thead>
<tr>
<th></th>
<th>Conv. SMR</th>
<th>Conv. ATR</th>
<th>ACR</th>
</tr>
</thead>
<tbody>
<tr>
<td>%H₂ from reformer</td>
<td>70%</td>
<td>40-50%</td>
<td>70%</td>
</tr>
<tr>
<td>Efficiency</td>
<td>75%</td>
<td>65%</td>
<td>75%</td>
</tr>
<tr>
<td>Capital Cost</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Fuel Flexibility</td>
<td>Natural Gas, Propane</td>
<td>Natural Gas, Propane, Diesel Fuel, Biogas</td>
<td>Natural Gas, Propane, Diesel Fuel, Biogas</td>
</tr>
<tr>
<td>Sulfur Tolerance</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Turndown</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>
Stable Operation of Low-Pressure Pilot-Scale ACR

Autothermal Cyclic Reforming & H₂ Refueling
Stable Operation of Low-Pressure Pilot-Scale ACR

ACR Reactor Temp

Time, minutes

Temp, °C
Shift Reactor Testing

Specification: %CO < 1%

Time, minutes

Shift Temperature

Shift Outlet CO%
Reformer Testing Accomplishments

- Operated system with about 30 start-stop cycles
- Operated system continuously for up to 30 hours using automated controls several times.
- Demonstrated less than 0.5% CO at exit of shift reactor
- Operated system from 55 kg/day to 15 kg/day (3.5:1 load change)
- Lab scale tests for 2,000 hrs
High Pressure Reformer Reactor: 3-D Stress & Thermal Modeling

<table>
<thead>
<tr>
<th>Reformer Zones</th>
<th>Heat Loss, kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>0.4</td>
</tr>
<tr>
<td>Side</td>
<td>2.7</td>
</tr>
<tr>
<td>Bottom</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>3.4</td>
</tr>
<tr>
<td>Specification</td>
<td>< 5.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Critical welds</th>
<th>Cold-Start Cycles to failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hottest Internal</td>
<td>> 90,000</td>
</tr>
<tr>
<td>Outer Shell</td>
<td>> 1,000,000</td>
</tr>
<tr>
<td>Specification</td>
<td>> 1,000</td>
</tr>
</tbody>
</table>
Praxair PSA Pilot Plant Meets Requirements

Design Goals: 60 kg/day, 99.99% H₂ purity, 75% recovery

4 bed design
> Shortened bed height
> Reduced amount of sieve required
> Improved recovery

3 bed design
> Advanced sieve material
> Proprietary 12-step cycle
> Lowered feed pressure requirements
Praxair PSA Prototype Skid Status

• Skid design 75% complete
• Adsorbent - on order
• Logged 300,000 cycles on valves
 > No detectable leaks using He @ 150 psig
H₂ Purity Status

<table>
<thead>
<tr>
<th>Component in the Product</th>
<th>DOE Targets</th>
<th>Current Status</th>
<th>Status with Future Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>98% dry basis</td>
<td>99.99% dry basis</td>
<td>~ 99.9999% dry basis</td>
</tr>
<tr>
<td>CO</td>
<td>< 1 ppm</td>
<td>< 5 ppm</td>
<td>< 1 ppm</td>
</tr>
<tr>
<td>CO₂</td>
<td>< 100 ppm</td>
<td>< 10 ppm</td>
<td>< 5 ppm</td>
</tr>
<tr>
<td>Sulfur</td>
<td>< 10 ppb</td>
<td>< 50 ppb</td>
<td>< 10 ppb</td>
</tr>
<tr>
<td>Ammonia</td>
<td>< 1 ppm</td>
<td>< 10 ppm</td>
<td>< 1 ppm</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td>< 100 ppm</td>
<td>< 10 ppm</td>
<td>< 10 ppm</td>
</tr>
<tr>
<td>O₂, N₂ & Ar</td>
<td>< 2%</td>
<td>~ 100 ppm</td>
<td>~ 100 ppm</td>
</tr>
</tbody>
</table>
Hydro-Pac Hydraulic H₂ Compressor

- Praxair’s LAX project provided an opportunity to gain experience needed for the ACR program
- Measured incoming power and calculated the compressor efficiency during factory run test on helium

\[\eta_{\text{adiabatic}} = 67.8\% \]
Fill Pump Dispensing with Added Low Pressure Bank (Patent Pending)

- Requires 1/3 the amount of storage than cascade dispensing
- Added low pressure storage bank to maximize utilization
- Requires only one “modified” packaged compressor by separating functionality of each intensifier during fill
 > Stages 1 & 2 fill low pressure bank
 > Stage 3 acts as fill pump
- Small scale testing to begin in 2nd quarter of 2004

Diagram:
- 150 psig H₂ from Reformer
- Stage 1 & 2 Intensifier
- Stage 3/ Filling Intensifier
- Hydraulic fluid reservoir
- 400-700 psig low P storage bank
- 1000-6500 psig mid-high P storage bank
- Dispenser
- 6500 psig H₂ to FC vehicle
- 1/3 the amount of storage than cascade dispensing
- Added low pressure storage bank to maximize utilization
- Requires only one “modified” packaged compressor by separating functionality of each intensifier during fill
 > Stages 1 & 2 fill low pressure bank
 > Stage 3 acts as fill pump
- Small scale testing to begin in 2nd quarter of 2004
Stationary Storage

- Plan to use ASME Section VIII, Division 1 Coded seamless steel cylinders
 - Designed with a safety factor of 3.0
 - Praxair has a perfect safety record when employing these vessels for H₂ service
- Work with ASME to develop new rules for composite vessels
 - Praxair working with ASME and is actively participating in the H₂ Steering Committee for storage and transport of H₂
Praxair is working with Fueling Technologies on Dispenser

- Safety
- Additions
 - A vibration switch terminates the fill operation in the event of vehicle contact and remains locked out until reactivated
 - A shear frame assembly and automatic shutoff valves as a safeguard against a more severe vehicular collision
 - FTI provided new connections to allow the use of N₂ for purging both the enclosure in an LEL shut-down event and for continuously purging the dispenser H₂ vent header
Project Safety

- System Component FMEA’s
- Preliminary Hazard Assessment
- Haz Op (with independent review)
- Accident Scenario Review (performed review on any medium scoring item on Haz Op)
ACR Project Plan for 2004-5

<table>
<thead>
<tr>
<th>#</th>
<th>Task Name</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>1</td>
<td>Low pressure reformer operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>High pressure reformer design and fabrication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Catalyst durability testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PSA design and fabrication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Installation in UCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Design of H2 compressor, storage and dispenser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>High pressure ACR reactor shakedown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>High pressure reformer start-up and operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Integration with PSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Integration with PEM fuel cell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Integration with H2 compressor, storage and dispenser</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Increased Reliability in Startups
- Extended Operation
- ASME Codes
- Modeling Stress due to Reformer Cycles
- Catalyst Durability test for 3000 hrs
- Codes & Standards
- Safety Reviews
Significant Reviewer Comments

• Excellent implementation of economics; Economic analysis should include reformers from other manufacturers
 > Working on DOE H₂ A panel
 > Supporting DOE on an apples-to-apples comparison of different reforming technologies

• Little innovation outside of GE reformer evident
 > Praxair submitted patents on PSA and refueling system recently
 > Novel 3-bed and 4-bed designs
 > Some of the innovation is confidential and will be presented to DOE

• Excellent component developed and test plans; Future plans are weak
 > Included a detailed project plan for next year
Summary

• Low-pressure pilot-scale ACR operation
 > Stabilized for extended periods of time
 > 30 start-stop cycles

• High pressure prototype reformer design is complete

• Prototype reformer and PSA will be fabricated and operated this year

• Reformer will be integrated with PSA, compressor and storage tanks

• Operation of integrated system in 2005
Acknowledgements

• Department of Energy
 > Mark Paster, Peter Devlin and Sig Gronich

California Energy Commission
 > Avtar Bining and Mike Batham

• California Air Resources Board
 > Steve Church