Optimum Utilization of Available Space in a Vehicle through Conformable Hydrogen Tanks

Scott Perfect
Andrew Weisberg
Salvador M. Aceves
Lawrence Livermore National Laboratory
(925) 422-0864
saceves@LLNL.GOV

2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review Presentation
May 25, 2004

This presentation does not contain any proprietary or confidential information
Storage volume is the most critical issue for H$_2$ vehicles

Objective: reduce overall storage volume by improving the volumetric efficiency of the tanks

Volumetric efficiency of conformable and non-conformable vessels

44% 66%

74% 75%
Budget

$500 k for FY04

new project (no funding in FY03)
Technical barriers and technical targets

Conformable pressure vessels address the following technical barriers from the Hydrogen Program R&D plan:
- **B. Weight and volume**, through high performance tanks and better utilization of space
- **C. Efficiency**, low energy for compressing H₂ and using liquid H₂ only when needed
- **D. Durability**, pressure vessels are certified to withstand over 10000 cycles.
- **E. Refueling time**, pressure vessels can be refueled quickly
- **G. Life cycle and efficiency analysis**, we have conducted analysis of system efficiency
- **H. Sufficient fuel storage for acceptable vehicle range**, due to low weight and volume
- **I. Materials**, we are looking into new composites and adhesives
- **J. Lack of tank performance data**, we will test tanks and generate performance data
- **L. Hydrogen boil-off**, reduced boil-off due to high pressure capability

We are planning to achieve the following technical targets:

- **2010 weight and 2005 volume targets** with compressed hydrogen
- **2010 weight and volume targets** with cryogenic hydrogen
- **Could achieve the 2015 weight target** with cryogenic H₂ and advanced vessels
Approach: conformable vessels are subjected to bending. We are investigating two techniques for reduced bending stress: continuous fiber vessels and vessels made of replicants.

Spherical and cylindrical tanks naturally resist “bending” without internal stiffeners.

Conformable tanks require internal stiffeners (ribs) to efficiently support the pressure and minimize bending stresses.

Continuous fiber vessels have to be designed to reduce the bending moments.

Vessels made of replicants rely on mass-produced parts joined together.

Metaphor = architecture. Not many domes or arches compared to ‘endoskeletal’ structures built routinely by assembling multi-use parts.
Pressure vessels can explode, releasing substantial energy. We will address this issue through vessel testing and certification:

- ISO certification for ambient temperature pressure vessels
- SAE LNG tests added for cryogenic tanks
- Innovative approaches to vessel safety (e.g., turn to dust failure)
Project timeline: Over the next five years we will analyze, design, manufacture and test two conformable pressure vessel designs.

Milestones:

1. Parametric finite element analyses of key structural details
2. Create CAD models of components
3. Select best shapes
4. Verification of structural performance of key components
5. Completion and release of specifications to build components
6. Finalized designs
7. Successful manufacture of conformable test articles
8. Proof of concept with demonstration of adequate burst pressure
Technical Accomplishments and Progress
Analysis of pressure vessel mechanics and PVT properties of H₂ indicates cryogenic vessels can meet volume and exceed weight targets.
Technical Accomplishments and Progress
We have analyzed three possible designs for continuous fiber conformable pressure vessels

“Sandwich” construction:
Two layers of composite separated by a foam material that transmits shear stresses between the composite layers

Ribbed construction:
Ribs hold the tank together and reduce bending stresses on the composite

“bucking” construction:
Uses advantageous geometry in combination with “force cancellation” to control bending

Diagram showing layers and structural components of the designs.
We have used FEA to evaluate and downselect conceptual designs for continuous fiber conformable vessels.

Sandwich structure does not offer clear advantages.

Ribs control deflection of flat faces, considerably reducing stresses.

Outstanding issue is how to attach ribs to outer shell.

“Bucking” system is very successful in reducing bending stresses, resulting in a very homogeneous stress distribution.
Technical Accomplishments and Progress
Geometries, Materials, and Performance for Replicants

Found the best macro-lattice geometry for hydrogen fueled motor vehicle replicant tanks

Metallography prepared tensile test specimens

Lap joints in thermoplastic composite as tensile test specimens (ASTM D3039)
Interactions and collaborations

- Recent CRADA with Automotive Composite Consortium (ACC) on finite element analysis of composites
- Under contract to DARPA to do advanced composite aerospace tank development
- Actively collaborating with the only composite matrix prototype firm (Spencer Composites)
- Long term collaborations with Stanford, Berkeley and Purdue on aerospace pressure vessels
Responses to reviewers’ comments
Project is new, but was presented to the
DOE/USCAR Technical Team

• Pursue innovative concepts, such as cryo-compressed hydrogen
 We are exploiting the entire phase diagram
• Pay attention to DOE targets and how to get there
 We are pursuing quantitative strategies in density
 vs. hydrogen weight fraction
• Bring in expertise on bonding
 We are actively working with composite matrix prototype
 experts
• Work together on the two approaches to conformability to take
 advantage of synergies between tasks
 Working together in analysis and planning
Future work (FY05)

Analysis
Continue conceptual analyses and begin detailed analyses
Replicant skin component modeling
Statistical performance modeling
Applied mathematics (modified group theory) of lattices

Conceptual design
Select most promising geometry for continuous fiber vessels
Engineering requirements for macrolattice components

Component testing
Begin design of component tests for continuous fiber vessels
Statistical testing to failure of replicant struts and connectors

“unique contribution and huge benefit”